ADBI*
A CS333 Extra Credit Project
Writeup

Chris Frost <chris@frostnet.net>

Description

ADBI is a BF interpreter which uses dynamic code gen-
eration to speed program execution, primarily by re-
moving the need to reinterpret BF code when looping.
(With some debugging of GNU lightning, ADBI could
also save the compiled code its DCG produces so that it
would not need to reinterpret the BF code when ADBI
is ran again.)

The Process to Build Code Dy-
namically

ADBI begins by reading in the BF code into an array in
memory, after which ADBI begins compiling the loaded
BF code (compiling is done in a function oddly enough
named compile bf()). ADBI uses a set of macros
called GNU lightning, copylefted by the Free Software
Foundation, that take the assembly instructions ADBI
generates and turns them into binary instructions for
the host cpu and allows for them to be executed (light-
ning is retargetable, currently running on x86 and sparc,
with plans for mips and alpha, and so the assembly lan-
guage used is one unique to lightning that allows for
quick mapping to the host cpu’s instruction set).

compile_bf (), where all the code generation occurs,
is described now. ADBI will be taking the loaded BF
code and will generate a function to be later called that
simulates the BF RTN operations [1]. There is an array
of bytes in ADBI which serves as the memory for the BF
program to store and manipulate its data. Based upon
the BF instruction, ADBI generates lightning instruc-
tions to increment/decrement data, the pointer to data,
to do i/o, and to implement the looping constructs.
None of these are difficult to express in assembly, though
looping takes some thought.

When ADBI encounters a [, it pushes the current
generated-assembly code location onto a stack (this is
a BF compile time operation, it doesn’t occur during
execution of the BF code), which is used to allow jump-
ing back to the current location, and generates a branch

*ADBI is pronounced “Add-Buy” and stands for “ADBI
Dynamic Code Generating BF Interpreter.”

instruction, using a forward branch reference which is
patched upon encountering the matching 1. This for-
ward reference is also pushed onto the stack. ADBI
then continues generating code like normal, which is
the body of this loop, until it encounters the match-
ing 1, at which point the forward reference is saved to
a local variable, a jump instruction is generated which
does a backwards jump to the location on the stack
(the beginning of the loop), and then a patch, using the
saved forward reference, is made to allow skipping over
the loop. The maximum size of the stack used to store
these references is a static-sized array, but it is created
such that for any loadable program this stack can not
be overfilled.

After parsing the loaded BF code, ADBI generates
a return instruction, and returns to main(), at which
point the generated function is called and executed, per-
forming the actions directed by the loaded BF code.

Performance Testing

While I didn’t have much time to analyze the perfor-
mance of ADBI and had a difficult time finding BF
programs with long run times, I was able to test two
quine programs (all other long-running programs re-
quired user input, which is difficult to automate with
our reference interpreter). The benchmarking results
are shown in Figure 1, showing ADBI to be more than
an order of magnitude faster than our given reference
interpreter for these tests.

| Program | ADBI | Reference |
quine.b 0.40s 5.71s
quine-bock.b | 0.50s 5.70s

Figure 1: Execution speed comparison (Tests ran on a
900MHz AMD Thunderbird)

References

[1] FrosT, CHRIS, BF Abstract RTN. Nov. 2001.

