
Modularly Typesafe Interface Dispatch in JPred

Christopher Frost Todd Millstein
University of California, Los Angeles

{frost,todd}@cs.ucla.edu

Abstract
Multiple dispatch generalizes the receiver-oriented dynamic dis-
patch of traditional object-oriented (OO) languages by allowing the
run-time classes of all arguments to be employed. While research
over the last decade has shown how to integrate multiple dispatch
with the modular static typechecking found in traditional OO lan-
guages, that work has been forced to impose unnatural restrictions
or modifications in order to safely accommodate multiple inheri-
tance. In the context of Java, the effect has been to make it difficult
to dispatch on interfaces.

In this paper, we illustrate how the concept ofpredicate
dispatch, which generalizes multiple dispatch by allowing each
method to be guarded by a predicate indicating when the method
should be invoked, provides a simple but practical way to support
dispatch on interfaces while preserving modular typechecking. We
have instantiated our approach in the context of JPred, an existing
extension to Java supporting predicate dispatch that previously dis-
allowed dispatch on interfaces altogether. We have formalized our
approach in a core subset of JPred and proven an associated type
soundness theorem. We have also performed two case studies us-
ing JPred, on the JPred compiler itself and on portions of Eclipse,
to demonstrate the utility of our approach in practice.

1. Introduction
Multiple dispatch[33, 5] is a natural generalization of the form
of dynamic dispatch found in traditional object-oriented (OO) lan-
guages like Smalltalk [23] and Java [2]. With multiple dispatch, the
method to be invoked upon a message send is determined based
on the dynamic classes of any subset of the message’s arguments,
rather than just the distinguishedreceiverargument. Multiple dis-
patch can be naturally applied to the implementation of several
common programming idioms [27], including binary methods [7],
event-driven systems, and the visitor design pattern [22].

While the concept of multiple dispatch originated a dynamically
typed setting, later research has reconciled multiple dispatch with
the modular static typechecking found in today’s mainstream OO
languages like Java. However, to achieve modular typechecking, all
of the proposed approaches place severe restrictions or unnatural
modifications on the ways in which multiple dispatch interacts
with multiple inheritance [1, 6, 16, 3, 30]. In the context ofJava,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM 0-89791-88-6/97/05. . . $5.00.

these restrictions and modifications affect the ability to dynamically
dispatch on interfaces, which we terminterface dispatch, greatly
hindering that idiom despite its practical utility.

In this paper, we describe a simple but practical way to integrate
multiple dispatch with multiple inheritance while preserving mod-
ular typechecking. Our key observation is that the notion ofpredi-
cate dispatch[19], which generalizes multiple dispatch by guarding
each method with a predicate indicating when the method should
be invoked, naturally allows potential multiple-inheritance ambigu-
ities to be modularly resolved without requiring extra restrictions or
modifications. We have implemented our approach in the context of
JPred [28], an existing extension to Java supporting predicate dis-
patch. JPred originally disallowed interface dispatch altogether be-
cause of the problems for modular typechecking, but our approach
allows JPred to now support unrestricted usage of interfacedis-
patch.

We have validated our approach in two ways. First, we have for-
malized JPred’s interface dispatch in an extension of Featherweight
Java [25] that we call Featherweight JPred (FJPred), and we have
proven the associated modular type system sound. FJPred is of in-
dependent interest, since it is the first provably sound formalization
of predicate dispatch of which we are aware. Second, we have un-
dertaken two case studies using JPred. We modified the JPred com-
piler, which is written in JPred on top of the Polyglot extensible
compiler framework [36], to use interface dispatch insteadof class
dispatch. We also rewrote portions of Eclipse [18] to use JPred, re-
lying heavily on interface dispatch. The case studies illustrate the
practical utility of our approach to interface dispatch, including its
use in the detection of several errors.

The next section presents the necessary background informa-
tion about multiple dispatch and the problem of combining modular
typechecking with multiple inheritance, using the MultiJava [16]
extension to Java as an example. Section 3 reviews JPred and de-
scribes our modular type system that supports interface dispatch in
a practical way. Section 4 presents the FJPred formalism, and Sec-
tion 5 discusses our experience using JPred’s approach to interface
dispatch in the case studies.

2. Background
2.1 Multiple Dispatch

Figure 1 shows a simple example of multiple dispatch in Multi-
Java [16]. Multiple dispatch is used to add an optimization pass
to a hypothetical compiler, without having to modify the original
classes representing the abstract syntax tree (AST) nodes.The first
two methods inOptimizer are multimethods, dynamically dis-
patching on the node argument tooptimize in addition to the
implicit receiver argument. For example, the@If annotation on
the first optimize method indicates that this method can only
be invoked upon aoptimize message send if the run-time class
of the actual argument forn is an instance ofIf or a subclass.
SinceIf andWhile are both subclasses ofNode, each of the first

abstract class Node { . . . }
class If extends Node { . . . }
class While extends Node { . . . }

class Optimizer {
Node optimize(Node@If n) { . . . }
Node optimize(Node@While n) { . . . }
Node optimize(Node n) { return n; }

}

Figure 1. Multiple dispatch in MultiJava.

two optimize methods in Figure 1 overrides the lastoptimize
method, which can be viewed as implicitly dynamically dispatch-
ing on theNode class itself.

When a message is sent in MultiJava, the unique applica-
ble method that overrides all other applicable methods is dy-
namically selected and invoked; the textual order of the meth-
ods is irrelevant. For example, consider the message send
new Optimizer().optimize(new If(. . .)). The first and third
optimize methods are applicable to this message send, while the
second method is not applicable sinceIf is not a subclass ofWhile.
Of the two applicable methods, the@If method is chosen because
it overrides the other applicable method. If a message send has no
applicable methods, amessage-not-understooderror is signaled at
run time. If a message send has at least one applicable methodbut
no unique applicable method that overrides all others, amessage-
ambiguouserror is signaled at run time.

A precise description of MultiJava’s method-invocation seman-
tics is available elsewhere [16, 15]. MultiJava employs thesymmet-
ric semantics of multimethod dispatch, which is used by several
other languages as well [11, 10, 14, 39, 16, 30]. The other common
approach is theencapsulatedsemantics of multimethod dispatch,
which is also used by many languages [34, 8, 7, 6, 3]. These ap-
proaches only differ in when a method in some classC is consid-
ered to override a method declared in a superclass ofC. This dis-
tinction is orthogonal to the problem described in this paper, which
affects both approaches equally, and our proposed solutioncan be
easily applied to languages using either semantics.

2.2 Modular Typechecking and Multiple Inheritance

Static typechecking ensures, among other things, that amessage-
not-understoodor message-ambiguouserror cannot occur at run
time. Conceptually, this involves checking that for each message
send, method lookup succeeds for each type-correct tuple ofargu-
ment classes to that message. For example, consider checking the
optimize message from Figure 1. The firstoptimize method will
be invoked upon a message send if the given AST node is an in-
stance ofIf or a subclass, the second method will be invoked if the
node is an instance ofWhile or a subclass, and the third method
will be invoked otherwise.

As described, the above typecheck isglobal, as it requires
knowledge of all type-correct argument classes for each message.
In the context of a modular typechecking regime, as in a language
like Java, this typecheck must be performed given only the set of
classes that are modularly available. In our example, it maybe the
case when typecheckingoptimize that some subclasses ofNode
are not available, and indeed it would be unsafe to assume that all
such subclasses are known.

Several conservative modular type systems have been proposed
for multiple dispatch [8, 6, 30, 29], and these type systems are
able to successfully typecheck theoptimize message. For exam-
ple, consider the modular type system underlying MultiJavaand
refined by later languages [29, 28]. To prevent run-timemessage-
not-understooderrors, the typechecker checks thatoptimize is ex-

interface Node { . . . }
interface If extends Node { . . . }
interface While extends Node { . . . }

Figure 2. A revised node hierarchy.

haustive, meaning that it has at least one applicable method for ev-
ery possible type-correct argument tuple. Exhaustivenessis assured
by the thirdoptimize method in Figure 1, which can handle an
arbitraryNode subclass. To prevent run-timemessage-ambiguous
errors, the typechecker checks that each pair ofoptimize methods
is unambiguous. In Optimizer, the first and third methods are un-
ambiguous because the first method strictly overrides the third one,
and similarly for the second and third methods. Finally, thefirst and
second methods are unambiguous because they aredisjoint, mean-
ing that they cannot be simultaneously applicable.

Unfortunately, the fact thatoptimize is modularly typesafe re-
lies critically on the fact that classes in Java support onlysingle
inheritance. It is the lack of multiple inheritance that ensures, with-
out knowledge of all classes in the program, that the first andsec-
ond optimize methods are disjoint, since the language prevents
the existence of a class that subclasses bothIf andWhile. Con-
sider instead a variant of our AST node hierarchy in which Java
interfaces are used instead of classes, as shown in Figure 2.With
this new hierarchy, the first and secondoptimize methods may no
longer be disjoint, since there could exist a class that implements
both theIf andWhile interfaces. If an instance of such a class were
ever passed tooptimize, amessage-ambiguouserror would occur
at run time.

Given whole-program knowledge, the typechecker would
only need to reject the givenoptimize methods as am-
biguous if there actually existed a classC implementing
both the If and While interfaces. Further, in that case,
the programmer could resolve the ambiguity and satisfy the
typechecker by adding anoptimize method of the form

Node optimize(Node@C n) { . . . }
for each such classC. However, any sound modular type system
must always conservatively reject theoptimize methods in Fig-
ure 1 (in the context of the node hierarchy of Figure 2), sincethere
could exist a multiply inheriting classC that is not modularly vis-
ible. Further, there is no way for the programmer to resolve this
potential ambiguity.

Therefore, the potential for multiple-inheritance ambiguities
that are not modularly detectable makes interface dispatchalmost
impossible to employ in practice. Unfortunately, interface dispatch
is often extremely useful. For example, it is common for a frame-
work to expose only interfaces to clients, keeping the underly-
ing implementation classes hidden. This is the case in both Poly-
glot [36] and Eclipse [18]. Without interface dispatch, clients of
these frameworks cannot enjoy the benefits of multiple dispatch.

2.3 Prior Approaches

There have been several prior approaches to handling the ambigui-
ties that arise from the interaction of multiple dispatch and multiple
inheritance. All of these approaches either forgo modular ambigu-
ity checking, impose severe restrictions on the ways in which mul-
tiple dispatch or multiple inheritance may be employed, or impose
unnatural modifications on the semantics of multiple dispatch or
multiple inheritance.

The simplest approach is to perform no compile-time ambiguity
checking whatsoever, thereby admitting the possibility ofmessage-
ambiguouserrors at run time. This approach is taken by the dy-
namically typed languages CommonLoops [5], CLOS [41, 38], and
Dylan [20, 39], as well as by Cmm [40], a multimethod extension
to C++ [42]. Another common approach is to perform static ambi-

guity checking but to require the whole program to be available
in order for such checking to be sound. This approach is taken
by the languages Cecil [11, 12], Tuple [26], the C++ extension
doublecpp [4], and the Java extension Nice [35].

MultiJava [16] safely performs modular ambiguity checking
and avoids the problem of multiple inheritance simply by forbid-
ding Java interfaces from being dynamically dispatched upon: the
@T syntax requiresT to be a class rather than an interface. Relaxed
MultiJava [31] extends MultiJava to allow interface dispatch among
other idioms, but it requires load-time checks on classes toensure
that no multiple-inheritance ambiguities arise.

Dubious [30] is a prototype-based OO calculus containing both
multimethods and objects that support multiple inheritance. Dubi-
ous has a modular type system calledSystem M, where a Dubious
moduleis the unit of typechecking. To make typechecking sound,
System M requires that only single inheritance is used across mod-
ule boundaries; arbitrary multiple inheritance is allowedwithin a
module. This restriction ensures that ifC inherits from bothB and
A, thenC is modularly available whenever eitherB or A is available,
so all potential multimethod ambiguities caused byB andA can be
modularly detected.

Half & Half [3] is an extension to Java supporting a form of
multimethods, among other things. Half & Half allows interfaces
to be dynamically dispatched upon. To retain modular type safety,
Half & Half requires that if a message has methods that dispatch on
two unrelated interfaces, then at least one of the interfaces and all
of its subinterfaces must not be declaredpublic. This restriction
ensures that any class that causes a multimethod ambiguity for
some message will be defined in the same package as the class
containing the potentially ambiguous methods. Therefore,a check
of all classes declared in that package is sufficient to detect any
ambiguities.

A final way to preserve modular typechecking is to modify
the semantics of either multiple inheritance or multiple dispatch
in order to “define away” ambiguities. The database programming
language Polyglot [1] contains CLOS-style multimethods. Ambi-
guities cannot arise due to multiple inheritance, because Polyglot
linearizes the specificity of each class’s superclasses, effectively
reducing multiple inheritance to single inheritance. Boyland and
Castagna [6] describe an extension of Java supportingparasitic
methods, which provide a form of multiple dispatch on interfaces.
The multimethod lookup semantics is similar to that described for
MultiJava in Section 2.1. However, in the case of an ambiguity, the
textually last ambiguous method is considered to override the oth-
ers.

3. Interface Dispatch in JPred
3.1 Predicate Dispatch

Predicate dispatch [19] allows each method to be guarded by a
predicate indicating when the method is applicable. By including
a form of run-time type test in the predicate language, predicate
dispatch subsumes the expressiveness of multiple dispatch. The
overriding relation on methods also naturally generalizesthat used
in multiple dispatch: methodm1 is considered to override method
m2 if m1’s predicate logically impliesm2’s predicate.

In previous work, we designed and implemented JPred [28],
an extension to Java supporting predicate dispatch. In addition
to dynamic dispatch on formal parameters, JPred’s predicate lan-
guage supports dispatch on in-scope fields, linear arithmetic pred-
icates, identifier binding, and arbitrary conjunctions, disjunctions,
and negations of such predicates. JPred adapts and generalizes the
ideas underlying MultiJava to support modular typechecking of
predicate dispatch. Prior languages supporting predicatedispatch
either do not support static exhaustiveness and ambiguity check-

class Optimizer {
Node optimize(Node n) when n@If { . . . }
Node optimize(Node n) when n@While { . . . }
Node optimize(Node n) { return n; }

}

Figure 3. The optimizer in JPred.

ing [43, 37] or require the whole program to be available in order
for such checking to be sound [19].

Figure 3 shows a JPred implementation of the compiler opti-
mizer from Figure 1. Methods now have an optionalwhen clause
containing the associated predicate; a method without awhen
clause is equivalent to one whosewhen clause has the predicate
true. We refer to a method that has awhen clause as apredicate
method. While the threeoptimize methods shown are equivalent
to the three MultiJava methods in Figure 1, predicate dispatch al-
lows additional expressiveness. For example, a programmercould
employ dispatch on fields, along with the ability to conjoin predi-
cates, to implement a form of constant folding for addition in our
optimizer:

Node optimize(Node n)
when n@Plus && n.left@IntLit && n.right@IntLit
{ return new IntLit(n.left.val + n.right.val); }

JPred is currently designed and implemented as an extensionto
Java 1.4. Moving to Java 1.5 would require support for parametric
polymorphism. We have previously formalized a variant of Mul-
tiJava’s modular type system in the presence of parametric poly-
morphism and proven it sound [29]. Parametric polymorphismand
multiple dispatch naturally coexist, as long as dynamic dispatch is
disallowed on an argument whose static type is a type parameter
(but dispatch on an argument whose static type is a polymorphic
class or interface, likeList<T>, is safely supported). We believe
this restriction naturally generalizes to safely handle predicate dis-
patch.

3.2 Modularly Typesafe Interface Dispatch

As with the MultiJava version in Figure 1, the JPred code in Fig-
ure 3 is only modularly typesafe if the AST nodes are classes.If
instead the nodes are defined as in Figure 2, then JPred’s modular
type system must assume that there could exist a class implement-
ing both theIf andWhile interfaces, and therefore that the first and
second methods in Figure 3 are potentially ambiguous. For this rea-
son, our original version of JPred [28] simply disallowed interface
dispatch altogether, as in MultiJava.

In this paper, we extend JPred to support interface dispatch
while preserving modular typechecking. Our solution is based on
a simple yet powerful observation: while it is impossible tomod-
ularly know all the classes (if any) that cause a pair of methods
to be ambiguous due to multiple inheritance, the expressiveness of
predicate dispatch nonetheless allows programmers to modularly
resolve all potential ambiguities. For example, one way to resolve
the ambiguity in Figure 3 is to add the following method:

Node optimize(Node n) when n@If && n@While { . . . }

Because this new method overrides both the second and third meth-
ods and is applicable whenever both of them are applicable, the
ambiguity between those two methods can never manifest itself as
a run-timemessage-ambiguouserror.

As an alternative to adding a dedicated method to handle the
ambiguity, predicate dispatch also easily allows a programmer to
specify one of the original ambiguous methods to be favored in
the event of an ambiguity. For example, the programmer couldre-
vise the predicate on the secondoptimize method to ben@While

class Optimizer {
Node optimize(Node n)
when n@If { . . . }

| when n@While { . . . }
| { return n; }

}

Figure 4. Ordered dispatch in JPred.

class Optimizer {
Node optimize(Node n) when n@If { . . . }
Node optimize(Node n) when n@While && !n@If { . . . }
Node optimize(Node n) when !n@If && !n@While

{ return n; }
}

Figure 5. The desugared version of Figure 4.

&& !n@If, thereby explicitly indicating that nodes implementing
both If andWhile should be optimized with the firstoptimize
method; the second method is no longer applicable. With thisre-
vised predicate, the first and second methods are now disjoint and
hence modularly guaranteed to be unambiguous.

These two approaches to resolving ambiguities naturally gen-
eralize beyond the case when exactly one argument (in addition
to the receiver) is dispatched upon. In general, given two ambigu-
ous JPred methods with predicatesP1 andP2, their ambiguity can
be resolved by adding a third method whose predicate isP1 &&
P2. Alternatively, the ambiguity can be resolved by modifyingthe
predicate on the second method to instead beP2 && !P1 (or by
modifying the predicate on the first method symmetrically).

The ability for programmers to resolve ambiguities via predi-
cate dispatch provides a straightforward approach to incorporating
interface dispatch in JPred while preserving modular type safety.
We have modified the JPred compiler to allow dispatch on inter-
faces. However, unlike the prior approaches to interface dispatch
described in Section 2.3, we have not imposed any new restric-
tions or modifications to either the method-lookup semantics or to
the type system. Instead we continue to use the original ambiguity-
checking algorithm for JPred [28]. It is up to the programmerto
resolve any signaled ambiguities in the manner deemed most ap-
propriate. We have shown two common ways for programmers to
resolve ambiguities, but variations on these approaches are possi-
ble.

3.3 Textual Order as Syntactic Sugar

To mitigate the burden of resolving ambiguities on programmers,
we have introduced a natural syntactic sugar for predicate methods.
This sugar is inspired by pattern matching in functional languages
like ML [32], which uses a “first-match” semantics in contrast to
the “best-match” semantics typical of OO languages. We observe
that the best-match semantics of predicate dispatch, basedon pred-
icate implication, is expressive enough to encode the first-match
semantics.

Figure 4 illustrates our syntactic sugar, which we refer to as or-
dered dispatch, using a revised version of theOptimizer. Ordered
dispatch consists of a single method declaration with several as-
sociatedcases. Conceptually, ordered dispatch uses a first-match
semantics: upon a message send, each case’s predicate is tested one
by one in textual order, and the first case whose predicate is satis-
fied is invoked. Given this semantics, the code in Figure 4 is modu-
larly typesafe even if the AST nodes are interfaces. In particular, if
the given node implements bothIf andWhile, the first case in the
figure will be invoked.

However, unlike prior approaches that resolve ambiguitiesus-
ing textual order [6], the introduction of ordered dispatchdoes not
entail any modifications to JPred’s method-lookup semantics, since
ordered dispatch is purely syntactic sugar. For example, Figure 5
shows the desugared version of the code in Figure 4. More gener-
ally, an ordered dispatch of the form

T m(T x) when P1 { . . . } | · · · | when Pn { . . . }

is desugared by the JPred compiler to the following collection of
regular JPred methods, whose textual order is irrelevant:

T m(T x) when P1 { . . . }
T m(T x) when P2 && !P1 { . . . }
· · ·
T m(T x) when Pn && !P1 && · · · && !Pn−1 { . . . }

Therefore, programmers can also easily mix ordered dispatch with
regular JPred methods. As a simple example, in figure 4 the pro-
grammer could choose to make the last case in the ordered dispatch
declaration a separate JPred method.

Because ordered dispatch is a syntactic sugar, the existingmod-
ular checks for exhaustiveness and unambiguity in JPred’s type-
checker are sufficient to ensure type safety in the presence of or-
dered dispatch. However, it is additionally useful to warn program-
mers when a case in an ordered dispatch declaration is unreach-
able, as this likely indicates a programming error. Such warnings
are analogous to thematch redundantwarnings provided by Stan-
dard ML [32].

To support these kinds of warnings, we have augmented the
JPred typechecker to require that each method’s predicate be sat-
isfiable. To see how this check subsumes a check for unreachable
cases, consider the following ordered dispatch declaration:

void m(Object o) when o@Number { . . . }
| when o@Integer { . . . }

Assuming thatInteger is a subtype ofNumber, the second case
above is unreachable. The JPred typechecker correctly signals a
warning, because the desugared version of the second case’spredi-
cate iso@Integer && !o@Number, which is unsatisfiable. The sat-
isfiability check is also useful for finding errors in regularJPred
methods.

3.4 Implementation

The JPred compiler was implemented as an extension to the Poly-
glot [36] compiler for Java. Modifying the JPred compiler tosup-
port our approach to interface dispatch proved to be quite straight-
forward. Interface dispatch was already allowed by the parser; we
added the ordered dispatch syntax, which the parser desugars as
described earlier. We also modified the typechecks on individual
predicates. First, we removed a typecheck that required dispatched-
upon types to be classes. Second, we removed a check that each
dispatched-upon type must be a strict subtype of the associated
static type, which is too restrictive in the presence of multiple inher-
itance. Instead we now employ Java’scasting conversionrules [24]
to ensure the appropriate relationship: an expression of the static
type must be able to be cast to the dispatched-upon type.

One novelty of the JPred compiler [28] is its usage of the
CVC Lite [17] validity checker in order to precisely reason about
predicates. For example, to decide whether a method with predicate
P1 overrides a method with predicateP2, the JPred compiler asks
CVC Lite whether the logical formulaP1 ⇒ P2 is valid. We have
augmented the JPred compiler to perform the satisfiability check
for a predicateP similarly, by asking CVC Lite whether the formula
!P is valid and signaling a warning if so. CVC Lite queries are
also employed in the exhaustiveness and unambiguity typechecks
on messages. These typechecks are described in detail in ourearlier

paper about JPred, and incorporating interface dispatch requires no
changes whatsoever to their implementations.

As context for each query to CVC Lite, the JPred compiler gen-
erates a set ofaxiomsthat provide necessary semantic information.
The original version of JPred encodes the subtype relation among
classes by generating one conceptual axiom per pair of classesC1
andC2 appearing in a query [28]:

• If C1 is a subclass ofC2, we declare the axiom∀x.(x@C1 ⇒
x@C2).

• Otherwise, ifC2 is a subclass ofC1, we declare the axiom
∀x.(x@C2 ⇒ x@C1).

• Otherwise, we declare the axiom∀x.(¬(x@C1 ∧ x@C2))

The last kind of axiom above encodes the fact that classes support
only single inheritance: if neither class is a subclass of the other,
then there can be no object that is an instance of both.

In the presence of interface dispatch, we must incorporate in-
formation about interfaces into the axioms about the subtype rela-
tion. We therefore modify the above process to generate one axiom
per pair oftypesappearing in a query, where each type is now ei-
ther a class or an interface. The new process is identical to that de-
scribed above, except that no axiom is generated in the last case if
at least one of the types is an interface. Simply omitting that axiom
forces CVC Lite to assume the possibility of multiple inheritance
and therefore to treat interfaces conservatively.

We stress that our new approach to modularly typesafe interface
dispatch is completely orthogonal to JPred’s usage of CVC Lite to
reason about predicates. The other existing languages thatinclude
predicate dispatch [19, 43, 37] employ their own specialized algo-
rithms for reasoning about predicates. These algorithms could be
modified to handle interface dispatch in much the same way as de-
scribed above.

Finally, the JPred compiler’s original code generation strategy
is completely unchanged. The compiler generates ordinary Java
source code. For each group of predicate methods that belongto
the same message and are declared in the same class, a single Java
method is generated that uses a linear sequence ofif statements
to determine which predicate method to invoke. Theif statements
are generated in some total order consistent with the methodover-
riding partial order, from most-specific to least-specific.This al-
gorithm is simple and modular, but it can cause unnecessary re-
evaluation of portions of predicates from oneif branch to the next.
The focus of our work is on the problem of modular typecheck-
ing, which is orthogonal to code-generation issues. We could adopt
work by others on generating efficient dispatch functions for pred-
icate dispatch [13] without affecting our results on modular ambi-
guity checking for interface dispatch.

4. Featherweight JPred
This section overviews Featherweight JPred (FJPred), an extension
of Featherweight Java (FJ) [25] that formalizes JPred’s approach
to interface dispatch. We have formalized the syntax, dynamic
semantics, and static semantics of FJPred and have proven a type
soundness theorem. We provide the most relevant portions ofthe
formalism here; the full details are available in our companion
technical report [21].

As far as we are aware, FJPred is the first provably sound for-
malization of predicate dispatch. The concept of multiple dispatch
has been formalized in several ways, along with associated type
soundness results [10, 9, 30, 29]. The original work on predicate
dispatch [19] presented a formalization of predicate dispatch but
did not prove type soundness.

TD ::= class C extends C implements I {T f; K M}
| interface I extends I {MH}

K ::= C(T f) {super(f); this.f = f;}
M ::= T m(T x) when P {return t;}
MH ::= T m(T x);
P,Q ::= true | x@T | ¬P | P∧P | P∨P
S,T ::= C | I
s,t ::= x | t.f | t.m(t) | new C(t) | (T)t
u,v ::= new C(v)

Figure 6. The syntax of FJPred.

4.1 Syntax

Figure 6 gives the syntax of FJPred, which augments FJ with
interfaces and method predicates. The metavariablesC, D, andE
range over class names,I and J over interface names,f and g
over field names,m andn over method names, andx andy over
parameter names. FJPred has analogous notational conventions and
sanity conditions to those in FJ. We comment on these things
throughout as necessary.

For uniformity, all methods have a predicate; a method with the
predicatetrue has the same semantics as a regular Java method.
Also, the syntax groups all methods of the same name in each class
as a single declaration. In particular, the notationT m(T x) when
P {return t;} abbreviates the following method declaration:

T m(T1 x1, · · · Tn xn)
when P1 {return t1;}
· · ·
when Pm {return tm;}

Having all methods for a given message in one declaration simpli-
fies the formal semantics. Note that the semantics of method lookup
is still independent of the textual order; FJPred does not support
JPred’s ordered dispatch syntactic sugar (but its desugaring is ex-
pressible).

Method predicates include type tests on formals and conjunc-
tions, disjunctions, and negations of such tests. We omit the other
constructs supported by JPred predicates, as they do not interact in
interesting ways with interface dispatch, which is the focus of our
formalization.

An FJPred program is a pair of atype table, which maps type
(class or interface) names to their declarations, and a term. The
rules assume a fixed global type tableTT, although a few of the
judgments additionally include an explicit type table in the context
(see below).

4.2 Reasoning About Predicates

Both the dynamic and static semantics must reason about predi-
cates and the relationships among them. The dynamic semantics
must evaluate predicates and must know the overriding relation for
methods, which depends on predicate implication, in order to per-
form method lookup. The static semantics must reason about pred-
icates to check exhaustiveness and unambiguity.

Figure 7 provides the rules for evaluating predicates; the judg-
mentTT;Γ |= P formalizes the conditions under which a predicate
evaluates totrue. The rules use an explicit type table in the con-
text, which shadows the implicit global type table; the reason for
this will be clear below. As usual,Γ denotes a type environment,
which maps variables to types. Intuitively,Γ provides the run-time
classes of the actual arguments to a method, which is necessary
to determine if a dynamic dispatch in the method’s predicatesuc-
ceeds. The rules rely on the subtype relation among types, denoted
TT ` S<:T, which is straightforward.

TT;Γ |= P

TT;Γ |= true

x:C ∈ Γ TT ` C<:T

TT;Γ |= x@T

TT;Γ 6|= P

TT;Γ |= ¬P

TT;Γ |= P1 TT;Γ |= P2

TT;Γ |= P1∧P2

TT;Γ |= P1

TT;Γ |= P1∨P2

TT;Γ |= P2

TT;Γ |= P1∨P2

Figure 7. Evaluating predicates.

x |= P

∀ TT′ ⊇ TT. ∀ C ⊆ dom(T T′).|C| = |x| impliesTT′;x:C |= P

x |= P

Figure 8. Predicate validity.

To formalize reasoning about predicates, we essentially need
to model the role that CVC Lite plays in the JPred compiler. It
is beyond the scope of this formalization to formally model the
particular decision procedures used by CVC Lite in order to prove
a query valid. Instead, we formalize theconsequenceof a CVC Lite
validity query. Figure 8 defines our notion of validity. The judgment
x |= P indicates that a logical formulaP, which uses the same syntax
as FJPred predicates, is valid, wherex are the free variables inP.
The associated rule defines a formula to be valid if in all extensions
of the current program, for all assignments of classes to thefree
variables inP, the formula evaluates totrue.

The use of all extensionsTT′ of TT reflects the modularity
of validity checking. For example, consider the formula¬(x@If
∧ x@While), whereIf andWhile are interfaces. Even if a given
type table has no class that implements both of these interfaces,
our rule ensures that the formula will not be considered to bevalid.
Quantifying over all extensions ofTT formalizes the conservative
nature of the validity check: CVC Lite must always assume the
possibility of a class that implements bothIf andWhile.1

4.3 Dynamic Semantics

As in FJ, the dynamic semantics of FJPred is formalized with a
small-step operational semantics whose main judgment has the
form t1 −→ t2. The associated rules are straightforward adapta-
tions of the FJ rules to our extended syntax. The only interesting
rule is the one for method invocation:

u = new D(. . .) mbody(m,C,D) = (x,t0)

(new C(v)).m(u)−→ [x 7→ u, this 7→ new C(v)]t0

The mbodyfunction performs method lookup, given the run-
time classes of the receiver and the other arguments. The rules
definingmbodyand a helper function are defined in Figure 9. These
rules formalize the encapsulated style of multimethod dispatch [8],

1 It would be slightly more accurate to quantify over all extensions of a
subsetof TT. Intuitively, this subset includes only the types mentioned in
the formulaP and their supertypes, as these are the only types that CVC
Lite is given information about. Our technical report [21] formalizes this
approach, but the two notions of validity can be shown to be equivalent, so
we employ the simpler version here.

mbody(m,C,D) = (x,t)

TT(C) = class C extends E implements I {T f; K M}
S m(S x) when P {return t;} ∈ M

TT;x:D |= Pi overridesIfApplicable(Pi ,P,x,D)

mbody(m,C,D) = (x,ti)

TT(C) = class C extends E implements I {T f; K M}
S m(S x) when P {return t;} ∈ M
there is noPi such thatTT;x:D |= Pi

mbody(m,C,D) = mbody(m,E,D)

TT(C) = class C extends E implements I {T f; K M}
m is not defined inM

mbody(m,C,D) = mbody(m,E,D)

overridesIfApplicable(P1,P2,x,D)

(P1 6
.

=P2 andTT;x:D |= P2) implies(x |= P1⇒P2 andx 6|= P2⇒P1)

overridesIfApplicable(P1,P2,x,D)

Figure 9. Method lookup rules.

whereby all methods in a class are considered to override theinher-
ited methods from superclasses. This is the semantics employed by
the full JPred language and compiler. It would be a small change
to instead formalize the symmetric semantics [11], and thischange
would not affect our results.

The first rule formbodyin Figure 9 applies when the receiver
class contains a unique applicable method that overrides all other
applicable methods in that class. The first two premises in the rule
identify the method, and the third premise indicates that the method
is applicable: its predicate evaluates totrue in the context of the
given actual argument classes. The final premise uses theover-
ridesIfApplicablehelper function to check that the method strictly
overrides all other applicable methods. The judgmentP1

.

=P2 holds
if P1 andP2 denote the same textual predicate from the program,
andP1⇒P2 abbreviates the predicate¬P1∨P2.

The second and thirdmbodyrules handle the situation when
there are no applicable methods in the receiver class — either there
are declared methods for the given message but none are applicable,
or there are no declared methods for the given message. In this case,
lookup proceeds recursively in the direct superclass.

4.4 Static Semantics

As usual, the typechecking rules for expressions are formalized
by a judgment of the formΓ ` t : T. The associated rules are
straightforward adaptations of the FJ rules to our extendedsyntax.
This includes the rule for typechecking message sends:

Γ ` t0 : T0 mtype(m,T0) = T→T
Γ ` t : S TT ` S<:T

Γ ` t0.m(t) : T

As in FJ, themtypehelper function looks up the type of a method
in some class, searching the superclass if no method declaration is
found. There is no need to search superinterfaces, because the ex-
haustiveness typecheck (described below) ensures that at least one
implementation of the method exists. We augment themtypefunc-
tion with the obvious rules for looking up the type of a method

M OK in C

x ` P OK x:T,this:C ` t : S TT ` S<:T
∀P ∈ P.∀Q∈ P.unambiguous(P,Q,x,P)

T m(T x) when P {return t;} OK in C

x ` P OK

x ` true OK

x ∈ x

x ` x@S OK

x ` P OK

x ` ¬P OK

x ` P1 OK x ` P2 OK

x ` P1∧P2 OK

x ` P1 OK x ` P2 OK

x ` P1∨P2 OK

unambiguous(P1,P2,x,P)

x |= P1 ⇒ P2 andx |= P2 ⇒ P1 impliesP1
.

= P2
Q = [P | P ∈ P andx |= P⇒ P1 andx |= P⇒ P2]

x |= (P1∧P2)⇒
W

Q

unambiguous(P1,P2,x,P)

Figure 10. Typechecking methods.

inside an interface, nondeterministically searching one of the su-
perinterfaces if no method signature is found.

The top rule in Figure 10 defines how methods are typechecked.
The first premise typechecks each predicate, using the rulesdefined
in the middle of the figure. These rules simply ensure that the
only variables a predicate refers to are the associated method’s
formals.2 The second and third premises ensure that the method
bodies are all type-correct. The body of a method is typechecked in
the context of the declared static types of the formals. It would be
safe to sometimes narrow these types based on the type tests in the
method’s predicate. The full JPred language does so, but we have
elided it for simplicity.

The final premise performs ambiguity checking on each pair of
predicates, as specified by the bottom rule in the figure. The rule for
ambiguity checking first requires that the two given predicatesP1
andP2 are not logically equivalent unless they are the same textual
predicate. The second premise uses a comprehension notation to
collect the subsetQ of predicates defined in the current method
declaration that override bothP1 and P2. The final premise then
ensures thatQ is a resolving setfor P1 andP2: whenever bothP1
and P2 are satisfied, then so is at least one predicate inQ. Two
special cases of this last requirement are worth noting. First, if
P1 overridesP2, then P1 is in Q so the last premise holds and
the methods are considered unambiguous, and similarly for the
case whenP2 overridesP1. Second, ifP1 andP2 are disjoint, then
P1∧P2 is logically false, so the last premise holds vacuously and
the methods are considered unambiguous.

Finally, the rules for typechecking classes and interfacesare pre-
sented in Figure 11. The first rule in the figure typechecks classes.
The first three premises are adapted from FJ, ensuring that the con-
structor has the appropriate form and typechecking each method
declaration; thefieldshelper function obtains a class’s fields (in-
cluding inherited ones) and is defined as in FJ. TheallMethod-

2 For simplicity, our formalism does not model other typechecks on predi-
cates, for example the casting conversion rules for dynamicdispatches dis-
cussed in Section 3.4.

TD OK

K = C(S g, T f) {super(g); this.f = f;}
fields(D) = S g M OK in C

allMethodNames(C) = m
override(m,C) exhaustive(m,C)

class C extends D implements I {T f; K M} OK

allMethodNames(I) = m override(m,I)

interface I extends I {MH} OK

override(m,T)

TT(C) = class C extends D implements I {T f; K M}
mtype(m,C) = S→S mformals(m,C) = x

override(m,D,S→S,x) override(m,I,S→S,x)

override(m,C)

TT(I) = interface I extends I {MH}
mtype(m,I) = S→S mformals(m,I) = x

override(m,I,S→S,x)

override(m,I)

override(m,T,T→T0,x)

mtype(m,T) = S→S0 impliesS = T andS0 = T0
mformals(m,T) = y impliesy = x

override(m,T,T→T0,x)

exhaustive(m,C)

mpreds(m,C) = P mformals(m,C) = x x |=
W

P

exhaustive(m,C)

Figure 11. Typechecking classes and interfaces.

Namesfunction returns the names of all methods declared in the
given class and in any of its (transitive) superclasses and superin-
terfaces. Each of the associated messages is then checked for proper
method overriding and for exhaustiveness.

The rules for method overriding are shown in the middle of Fig-
ure 11. Analogous with the rule for method overriding in FJ, we
require that a class’s superclasses and superinterfaces agree with
the class on each method’s type. We also require a class’s super-
classes and superinterfaces to agree with the class on each method’s
formal-parameter names, which are accessed by themformals
helper function. Requiring agreement on formal-parameternames
simplifies exhaustiveness checking by ensuring that all method
predicates have the same free variables.

The rule for exhaustiveness checking is shown at the bottom of
Figure 11. Thempredsfunction returns all predicates associated
with a method of the given message name in the given class and in
all superclasses. The message is deemed exhaustive if the disjunc-
tion of all of these predicates is valid. This condition ensures that
every invocation of the message will have at least one applicable
method.

It is important for soundness that theallMethodNamesfunction
(definition not shown) returns all inherited method names inaddi-
tion to the names of methods declared in the current class, sothat
inherited method names are subject to the overriding and exhaus-
tiveness checks. For example, this ensures that if a class does not
define a methodm but inherits two different declarations ofm, then
these declarations will be required to agree on the method’stype.
As another example, considering inherited method names ensures
that exhaustiveness checking will fail if a class inherits amethod
signature from some superinterface but does not provide or inherit
an implementation of this method.

4.5 Type Soundness

We have proven a type soundness theorem for FJPred using the
standard “progress and preservation” style [44].

THEOREM 4.1. (Progress) If̀ t : T, then eithert is a value,
t contains a subexpression of the form(S)(new C(v)) where
TT ` C6<:S, or there exists some terms such thatt−→ s.

THEOREM 4.2. (Type Preservation) IfΓ ` t : T andt −→ s, then
there exists some typeS such thatΓ ` s : S andTT ` S<:T.

The full proofs of these theorems are available in our companion
technical report [21]. The interesting part of the progressproof in-
volves showing that method lookup always succeeds on well-typed
programs, which requires proving the sufficiency of the exhaustive-
ness and unambiguity typechecks. The type preservation proof is a
straightforward generalization of that for FJ.

5. Case Studies
This section describes two case studies we undertook to evaluate
the effectiveness of JPred’s interface dispatch in realistic settings.
First, we updated the JPred compiler, which is written in JPred, to
use interface dispatch instead of class dispatch. Second, we updated
portions of Eclipse, which is written in Java, to use JPred.

5.1 JPred

The JPred compiler is built as a 15kloc extension to the Polyglot ex-
tensible Java compiler [36], which is written in Java. Polyglot uses
a hierarchy of Java interfaces to represent the various AST nodes,
and a parallel hierarchy of Java classes implements these interfaces.
The intent is that extenders of the compiler never directly manipu-
late the underlying classes, instead only accessing them through the
associated interfaces. This level of indirection is critical for ease of
extension and for composition of extensions.

Our extension to Polyglot implementing JPred is itself written
in JPred. There are several natural opportunities for employing
predicate dispatch in the implementation of a Polyglot extension,
most notably in the code for a new compiler pass. Polyglot supports
the easy addition of new traversals (calledvisitors in Polyglot,
by analogy with the visitor design pattern [22]) over the AST
nodes. The visitors that come with Polyglot often must employ
instanceof tests and type casts in order to provide specialized
behavior for each kind of AST node. In our new visitors, we used
JPred to allow the dispatch constraints to be declarativelyspecified
and statically checked for exhaustiveness and unambiguity, similar
to the style illustrated by our hypotheticalOptimizer in Figure 3.

Unfortunately, when we originally implemented our Polyglot
extension, JPred did not support interface dispatch. Therefore, the
only way to obtain the benefits of predicate dispatch was to dispatch
directly on AST node classes instead of the associated interfaces. In
this way, JPred’s limitation forced us to violate the intended Poly-
glot style, subverting the provided abstraction layer. Dispatching
directly on the underlying node classes also made our visitors ex-

public class DispatcherBuilder extends ContextVisitor {
protected Node leaveCall(Node n)
when n@ClassBody c { . . . }

}

Figure 12. A simple usage of class dispatch in the JPred compiler.

public class DispatcherBuilder extends ContextVisitor {
protected Node leaveCall(Node n)
when n@ClassBody { . . . }

}

Figure 13. Interface dispatch version of Figure 12.

public static void checkLinearity(Expr e)
when e@Unary c { . . . }

public static void checkLinearity(Expr e)
when e@Binary c { . . . }

public static void checkLinearity(Expr e) { . . . }

Figure 14. An example with multiple predicate methods.

public static void checkLinearity(Expr e)
when e@Unary { . . . }

| when e@Binary { . . . }
| { . . . }

Figure 15. Interface dispatch version of Figure 14.

tremely brittle in the face of later evolution or extension to the com-
piler.

After we added support for interface dispatch in the JPred com-
piler, we were able to rewrite the entire compiler to exclusively em-
ploy interface dispatch instead of class dispatch for the purposes of
dispatching on AST nodes. In total, there were 28 messages whose
method implementations were converted from using class dispatch
to using interface dispatch. In 14 of these cases, the message con-
tained only a single predicate method (in addition to one or more
methods without a predicate). For the most part, convertingthese
cases was as simple as replacing each textual class dispatchin the
predicate by the corresponding interface dispatch; Polyglot’s nam-
ing convention is thatN c is the name of the node class implement-
ing interfaceN. For example, Figure 12 shows some code using
class dispatch, and Figure 13 shows the version modified to em-
ploy interface dispatch.

The other 14 messages we modified each contained between
two and 12 predicate methods, with a median of five. To han-
dle these messages, we converted class dispatches to interface dis-
patches as shown above, and we additionally used the ordereddis-
patch syntactic sugar to allow modular ambiguity checking to suc-
ceed. Figure 14 shows a simple example involving two predicate
methods, and Figure 15 shows the version modified to employ in-
terface dispatch.

In Figure 15, the use of ordered dispatch resolves the potential
ambiguity between the first two methods: the first method willbe
invoked if an instance of a class implementing bothUnary and
Binary is ever passed tocheckLinearity. However, in this case
we are simply assuming that such a scenario cannot occur, since it
does not make sense for an AST node to represent both a unary and
a binary expression. Indeed, this scenario would likely be indicative
of a program error. If desired, the programmer can catch such
errors at run time by adding a new method with predicatee@Unary
&& e@Binary that appropriately handles the erroneous scenario.

Compile time (secs) CVC Lite queries
JPred-orig 45.9 217
JPred-interface 47.3 310

Figure 16. Quantitative Results

However, that approach becomes prohibitively burdensome as the
number of interfaces dispatched upon increases.

This limitation is not unique to JPred. For example, manual dis-
patch in Java using anif statement that performs a linear sequence
of instanceof tests suffers from the same problem, as does an ap-
proach based on parasitic methods, which were discussed in Sec-
tion 2.3. The approaches to interface dispatch embodied by Dubi-
ous and Half & Half, also discussed in that section, would alleviate
this problem to some extent by imposing package-level restrictions
that would make it easier for programmers to manually find allim-
proper usages of multiple inheritance. However, these restrictions
would also be impractical to abide by in the context of Polyglot.
Dubious would disallow Polyglot extensions from ever multiply
inheriting from existing AST node interfaces, since Polyglot ex-
tensions are written in their own package. Half & Half’s restriction
would cause the code in Figure 15 to fail to typecheck, since both
Unary andBinary are declaredpublic.

When converting a set of predicate methods to use ordered dis-
patch, care must be taken to ensure that the previously unordered
methods are placed in the appropriate textual order. The compile-
time check for unsatisfiable method predicates described inSec-
tion 3.3 turned out to be a useful sanity check for proper textual
ordering. With this check, the JPred compiler was able to debug it-
self! In particular, running the JPred compiler on itself caused the
unsatisfiability check to fail for an ordered dispatch declaration in
which a predicate of the formp@PredicateSpecial was being
tested after a predicate of the formp@PredicateTarget, where
PredicateSpecial is a subinterface ofPredicateTarget. It was
easy to miss this error by manual inspection, because the erroneous
ordered dispatch declaration consisted of nine cases, of which the
two cases causing the error were textually the third and eighth ones.

Finally, Figure 16 contains the quantitative results comparing
the compilation of the previous version of JPred, compiled with it-
self, and the modified version of JPred containing only interface
dispatch, compiled with itself. The possibility of multiple inheri-
tance requires somewhat more queries to CVC Lite in order to en-
sure unambiguity, causing a small increase in overall compile time.

5.2 Eclipse

Eclipse is a widely used, extensible platform designed for build-
ing integrated development environments (IDEs), written in Java.
Eclipse is structured as a small kernel, thePlatform Runtime, and a
collection of plugins that provide Eclipse’s functionality, which are
discovered at run time. We performed a small case study on a por-
tion of Eclipse to evaluate JPred’s utility for complex programs not
designed with predicate dispatch in mind. For this study we updated
the getChildren() and hasChildren() methods of all classes
meeting the interfaceITreeContentProvider in the Java Devel-
opment Tooling (JDT) UI plugin,org.eclipse.jdt.ui. JDT adds
Java support to Eclipse, and theITreeContentProvider is used
to display tree-structured information. Figure 17 shows the classes
we modified.

Figures 18 and 19 show one of the simpler updates, which
is representative of our general approach. Eclipse’s plugin na-
ture results in code that is heavily dependent on interfaces:
both IJavaModel and IProject are interfaces. The original
method performs manual interface dispatch viainstanceof tests,
along with associated run-time type casts. The JPred version

Figure 17. Eclipse’s JDT UIITreeContentProvider interface
and its implementations.

public Object[] getChildren(Object parentElement) {
try {

if (parentElement instanceof IJavaModel)
return concatenate(

super.getChildren(parentElement),
getNonJavaProjects((IJavaModel)parentElement));

if (parentElement instanceof IProject)
return ((IProject)parentElement).members();

return super.getChildren(parentElement);
} catch (CoreException e) {

return NO CHILDREN;
}

}

Figure 18. An example method from Eclipse.

public Object[] getChildren(Object parentElement) {
try {

return getChildrenHelper(parentElement);
} catch (CoreException e) {

return NO CHILDREN;
}

}

protected Object[] getChildrenHelper(Object parentElement)
throws CoreException

when parentElement@IJavaModel {
return concatenate(

super.getChildren(parentElement),
getNonJavaProjects(parentElement));

}
| when parentElement@IProject {

return parentElement.members();
}
| {

return super.getChildren(parentElement);
}

Figure 19. Interface dispatch version of Figure 18.

is more declarative, is checked for exhaustiveness and unam-
biguity, and obviates the need for type casts. Other updates
relied on combinations of interface dispatch with other as-
pects of predicate dispatch. For example, the JPred versionof
JavaBrowsingContentProvider.getChildren() contains the
following case, wherefProvideMembers is aboolean field inher-
ited from a superclass:

| when (fProvideMembers && element@IType) {
return getChildren(element);

During the course of the case study, the JPred compiler revealed
one error and one potential error in Eclipse’s JDT UI plugin.First,
ProjectAndSourceFolderContentProvider.getChildren()
has two cases in anif statement that dispatch on whether the
method’s parameter implements theIStructuredSelection
interface; the second case is unreachable. Updating this method
to use JPred revealed the error because the (desugared ver-
sion of the) second case’s predicate was not satisfiable,
causing a compile-time warning to be signaled. Second,
DestinationContentProvider.getChildren() contains a
sequence ofif-else if statements that performinstanceof
tests on interfaces, but without a finalelse clause. When this
sequence was converted to a JPred helper method, a compile-time
exhaustiveness error was signaled, forcing the programmerto be
explicit about the intended behavior when no case applies. In the
original code, it is unclear if such a situation is truly intended to be
a no-op or if it is indicative of a program error.

This case study also illustrated some limitations of JPred.
All of these limitations are orthogonal to our approach to in-
terface dispatch. First, JPred only allows dispatch to occur
at “top level.” This limitation sometimes necessitated thecre-
ation of helper methods, likegetChildrenHelper in Figure 19.
It would be useful to explore a version of predicate dis-
patch that can be used within method bodies, analogous to a
switch statement. Second, sometimes JPred’s predicate language
was too restrictive. For example, thehasChildren method in
JavaWorkingSetPageContentProvider is implemented as a se-
quence ofif statements whose first one is as follows:

if (element instanceof IProject &&
!((IProject)element).isAccessible())

return false;

It would be nice to convert this code to use predicate dispatch,
but JPred does not allow method calls in predicates. We plan to
augment JPred to support calls to methods that are declared (and
checked to be)pure, meaning that they are side-effect-free. Finally,
JPred’s style is targeted to methods that can be implementedas sev-
eral logically independent cases. There were some Eclipse methods
whose structure was more complicated, for example depending on
one case falling through to the next one. In these situations, it was
not natural to employ predicate dispatch, so we left the codeas is.

In total, the original Eclipse methods contained 30 type casts,
all on interfaces. Updating these methods to use JPred reduced the
number of type casts to three. One of the remaining casts relies on
the relationship between a field’s value and the type of a parameter.
The other two remaining casts involve scenarios where JPred’s
limitations, discussed above, precluded predicate dispatch.

6. Conclusion
We have demonstrated a natural approach to resolving the tension
between multiple dispatch and multiple inheritance while retain-
ing fully modular static typechecking. The key idea is to move
from multiple dispatch to the more general concept of predicate

dispatch, whose extra expressiveness allows multiple-inheritance
ambiguities to be modularly resolved by programmers. We have in-
stantiated our approach to support dispatch on interfaces in JPred, a
predicate-dispatch extension to Java that originally disallowed dis-
patch on interfaces altogether. We have validated our approach by
formalizing JPred’s interface dispatch and proving an associated
type soundness theorem, and by demonstrating the utility ofJPred’s
interface dispatch in two case studies.

References
[1] R. Agrawal, L. G. DeMichiel, and B. G. Lindsay. Static Type

Checking of Multi-Methods. InProceedings of the OOPSLA ’91
Conference on Object-oriented Programming Systems, Languages
and Applications, pages 113–128, Nov. 1991.

[2] K. Arnold, J. Gosling, and D. Holmes.The Java Programming
Language Third Edition. Addison-Wesley, Reading, MA, third
edition, 2000.

[3] G. Baumgartner, M. Jansche, and K. Laufer. Half & Half: Multiple
dispatch and retroactive abstraction for Java. Technical Report
OSU-CISRC-5/01-TR08, Department of Computer and Information
Science, The Ohio State University, revised March 2002.

[4] L. Bettini, S. Capecchi, and B. Venneri. Double Dispatchin C++.
Software – Practice and Experience, 2005.

[5] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik,and
F. Zdybel. CommonLoops: Merging Lisp and object-oriented
programming. InConference Proceedings on Object-oriented
Programming Systems, Languages and Applications, pages 17–29.
ACM Press, 1986.

[6] J. Boyland and G. Castagna. Parasitic methods: Implementation of
multi-methods for Java. InConference Proceedings of OOPSLA ’97,
Atlanta, volume 32(10) ofACM SIGPLAN Notices, pages 66–76.
ACM, Oct. 1997.

[7] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group, G. T.
Leavens, and B. Pierce. On binary methods.Theory and Practice of
Object Systems, 1(3):217–238, 1995.

[8] G. Castagna. Covariance and contravariance: Conflict without a
cause.ACM Transactions on Programming Languages and Systems,
17(3):431–447, Mar. 1995.

[9] G. Castagna.Object-Oriented Programming: A Unified Foundation.
Progress in Theoretical Computer Science. Birkhauser, Boston, 1997.

[10] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded
functions with subtyping.Information and Computation, 117(1):115–
135, Feb. 1995.

[11] C. Chambers. Object-oriented multi-methods in Cecil.In O. L.
Madsen, editor,Proceedings ECOOP ’92, LNCS 615, pages 33–56.
Springer-Verlag, June 1992.

[12] C. Chambers. The Cecil language specification and rationale:
Version 2.1. www.cs.washington.edu/research/projects/
cecil/pubs/cecil-spec.html, Mar. 1997.

[13] C. Chambers and W. Chen. Efficient multiple and predicate
dispatching. In L. Meissner, editor,Proceeings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA‘99), volume 34.10 ofACM
Sigplan Notices, pages 238–255, N. Y., Nov. 1–5 1999. ACM Press.

[14] C. Chambers and G. T. Leavens. BeCecil, a core object-oriented
language with block structure and multimethods: Semanticsand
typing. In 4th Workshop on Foundations of Object-Oriented
Languages, Jan. 1997.

[15] C. Clifton. MultiJava: Design, implementation, and evaluation of
a Java-compatible language supporting modular open classes and
symmetric multiple dispatch. Technical Report 01-10, Department of
Computer Science, Iowa State University, Ames, Iowa, Nov. 2001.

[16] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava:
Modular open classes and symmetric multiple dispatch for Java.
In OOPSLA 2000 Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Minneapolis, Minnesota,
volume 35(10) ofACM SIGPLAN Notices, pages 130–145, Oct.

2000.
[17] CVC Lite home page.http://verify.stanford.edu/CVCL.
[18] Eclipse home page.http://www.eclipse.org.
[19] M. Ernst, C. Kaplan, and C. Chambers. Predicate dispatching: A

unified theory of dispatch. In E. Jul, editor,ECOOP ’98–Object-
Oriented Programming, LNCS 1445, pages 186–211. Springer, 1998.

[20] N. Feinberg, S. E. Keene, R. O. Mathews, and P. T. Withington. The
Dylan Programming Book. Addison-Wesley Longman, Reading,
Mass., 1997.

[21] C. Frost and T. Millstein. Featherweight JPred. Technical Report
CSD-TR-050038, UCLA Computer Science Department, 2005.ftp:
//ftp.cs.ucla.edu/tech-report/2005-reports/050038.pdf.

[22] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Massachusetts, 1995.

[23] A. Goldberg and D. Robson.Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, MA., 1983.

[24] J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language
Specification Second Edition. The Java Series. Addison-Wesley,
Boston, Mass., 2000.

[25] A. Igarashi, B. C. Pierce, and P. Wadler. FeatherweightJava: a
minimal core calculus for Java and GJ.ACM Transactions on
Programming Languages and Systems, 23(3):396–450, May 2001.

[26] G. T. Leavens and T. D. Millstein. Multiple dispatch as dispatch on
tuples. InOOPSLA ’98 Conference Proceedings, volume 33(10) of
ACM SIGPLAN Notices, pages 374–387, Oct. 1998.

[27] T. Millstein. Reconciling Software Extensibility with Modular
Program Reasoning. Ph.D. dissertation, Department of Computer
Science & Engineering, University of Washington, 2003.

[28] T. Millstein. Practical predicate dispatch. InOOPSLA 2004
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, Oct. 2004.

[29] T. Millstein, C. Bleckner, and C. Chambers. Modular typechecking
for hierarchically extensible datatypes and functions.ACM Transac-
tions on Programming Languages and Systems, 26(5):836–889, Sept.
2004.

[30] T. Millstein and C. Chambers. Modular statically typedmultimethods.
Information and Computation, 175(1):76–118, May 2002.

[31] T. Millstein, M. Reay, and C. Chambers. Relaxed MultiJava:
Balancing extensibility and modular typechecking. InProceedings
of the 2003 ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, Anaheim, CA, Oct. 2003.

[32] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of
Standard ML (Revised). The MIT Press, 1997.

[33] D. A. Moon. Object-oriented programming with Flavors.In
Conference Proceedings on Object-oriented Programming Systems,
Languages and Applications, pages 1–8. ACM Press, 1986.

[34] W. B. Mugridge, J. Hamer, and J. G. Hosking. Multi-methods
in a statically-typed programming language. In P. America,
editor, ECOOP ’91: European Conference on Object-Oriented
Programming, LNCS 512, pages 307–324. Springer-Verlag, 1991.

[35] Nice home page.http://nice.sourceforge.net.
[36] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An

extensible compiler framework for Java. InProceedings of CC
2003: 12’th International Conference on Compiler Construction.
Springer-Verlag, Apr. 2003.

[37] D. Orleans. Incremental programming with extensible decisions. In
Proceedings of the 1st international conference on Aspect-oriented
software development, pages 56–64. ACM Press, 2002.

[38] A. Paepcke.Object-Oriented Programming: The CLOS Perspective.
MIT Press, 1993.

[39] A. Shalit. The Dylan Reference Manual: The Definitive Guide to the
New Object-Oriented Dynamic Language. Addison-Wesley, Reading,
Mass., 1997.

[40] J. Smith. Draft proposal for adding Multimethods to C++. Avail-
able athttp://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/-
2003/n1529.html.

[41] G. L. Steele Jr.Common Lisp: The Language, Second Edition. Digital
Press, Bedford (MA), USA, 1990.

[42] B. Stroustrup. The C++ Programming Language: Third Edition.
Addison-Wesley, Reading, Mass., 1997.

[43] A. M. Ucko. Predicate Dispatching in the Common Lisp Object
System. Technical Report 2001-006, MIT Artificial Intelligence
Laboratory, June 2001.

[44] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness.Information and Computation, 115(1):38–94, 15 Nov.
1994.

