
Amorphous Shape Mapping

A Thesis
in TCC 402

Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science

by

Christopher Frost

May 7, 2004

On my honor as a University student, on this assignment I have neither given nor received unau-
thorized aid as defined by the Honor Guidelines for Papers in TCC Courses.

Signed:

Approved
Technical Advisor — David E. Evans

Approved
TCC Advisor — Patricia C. Click

Contents

1 Introduction 1
1.1 Purpose Statement . 1
1.2 Problem Statement . 1

1.2.1 Project Context . 2
1.2.2 The Problem: Amorphously Mapping Unknown Shapes 3

1.3 Uses of Amorphous Shape Mapping . 4
1.4 Overview . 4

2 Background 6
2.1 Amorphous and Swarm Computing . 6
2.2 Sensor Networks . 7

3 Mapping Method 9
3.1 An Example Method . 9
3.2 Assumptions . 10

3.2.1 Environment . 10
3.2.2 Cell . 11
3.2.3 Observer . 14

3.3 Cell Primitives . 15
3.4 Method . 15

3.4.1 Placing Cells . 16
3.4.2 Mapping the Region . 16
3.4.3 Querying Cells . 16

4 Analysis and Discussion 18
4.1 Simulation Environment . 18
4.2 Connectivity Description . 20

4.2.1 Method . 20
4.2.2 Results . 21

4.3 Sample Point Description . 22
4.3.1 Method . 23
4.3.2 Results . 25

4.4 Polygonal Description . 32
4.4.1 Method . 33
4.4.2 Results . 33

4.5 Largest Connected Cell Subgroup Behavior Explanations and Predictions 35
4.5.1 Background and Observed Behavior Explanation 37
4.5.2 Required Parameters for Complete Cell Connectedness 38

1

5 Conclusions 41
5.1 Summary and Interpretation of Results . 41
5.2 Social and Ethical Context . 42
5.3 Recommendations for Future Research . 43

2

List of Figures

1.1 Amorphous Shape Growing Steps . 3

3.1 Berkeley’s Mica Mote . 12
3.2 A Cell’s Primitive Actions . 15
3.3 Shape Mapping Cell Program . 17

4.1 Regions and Shapes Used in Analysis . 19
4.2 Connectivity Graph Descriptions . 21
4.3 Cell Placement Algorithm . 24
4.4 Sample Point Descriptions: Number of Sensor Resolution 25
4.5 Correct Cell Placement vs Sensor Resolution . 26
4.6 Number of Cells and E[n] . 27
4.7 Sample Point Descriptions: Number of Cells . 28
4.8 Correct Cell Placement vs Number of Cells . 29
4.9 Disconnected Subgroup Size Distribution vs Number of Cells 29
4.10 Sample Point Descriptions: Cells Queried . 30
4.11 Correct Cell Placement vs Percent Cells Queried . 31
4.12 Disconnected Subgroup Size Distribution vs Percent Cells Queried 31
4.13 Convex Hull Example . 32
4.14 Convex Hull Shape Description: Number of Sensor Resolutions 34
4.15 Convex Hull Shape Description: Number of Cells . 34
4.16 Convex Hull Shape Description: Percent Cells Queried 35
4.17 Graph Connectivity Behavior Summary . 38
4.18 E[nnghbrs]: Asymptotic Limit and Observed Results Comparison 40

Abstract

Research in amorphous computing studies asynchronous, identically programmed, and

decentralized agents performing computations. Research in this area has produced methods for

taking existing descriptions of arbitrary shapes and amorphously regrowing the approximated

shape. These methods assume descriptions of shapes to be in a form accessible to traditional

computers; however, using traditional computers to produce such descriptions of shapes in the

physical world is a problematic and generally difficult task.

The objectives of this thesis project were to develop and analyze a method of generating a

description, accessible to traditional computers, of an arbitrary two-dimensional shape by

amorphously mapping the desired shape. Three interesting types of shape descriptions

generatable from an amorphous shape mapping computer, connectivity, point sampling, and

polygonal, are presented and discussed. With intended descriptions and uses in mind, the

developed method’s assumptions are stated and discussed and the primitive cell actions are given.

The developed cell program’s three stages are then detailed: placing the cells, mapping the

region, and transferring the gathered data to a transferring computer. This thesis project’s focus

is mapping the given region.

Simulations of the three types of shape descriptions are described and results presented and

described. Analytical results were derived for ensuring complete region description. The

developed amorphous shape mapping method is able to accurately map the tested shapes using

relative cell location information obtained as cells receive messages from other nearby cells.

Experiments show that even cells without relative location sensing abilities can produce

descriptions of the mapped shapes.

Chapter 1

Introduction

1.1 Purpose Statement

Comparing biological and computer systems with each other, one notices how capable

biological systems are at coping with changes in the environment. Research in Amorphous

Computing [1] over the past decade has taken ideas from the field of biology to help design

systems of hundreds of thousands of agents which, through locally-specified agent behaviors,

exhibit a predictable system-level behavior. The purpose of this project was to develop a method

of producing maps of two-dimensional shapes accessible to traditional computers making use of,

and extending, ideas from biology and amorphous computing. The developed method, described

in Chapter 3 and analyzed in Chapter 4, is able to map shapes and transfer this information to

traditional computers to describe the shape in terms of connectivity, sampling points, and a

polygonal bound.

1.2 Problem Statement

Biological systems, such as an ant colony, assemble into complex structures and often exhibit

global behavior without centralized control. Traditional computers, in contrast, generally operate

through centralized control and are intolerant of small failures. Bringing biological systems’

robust and distributed properties to computing has been the aim of work over the past decade by

researchers developing Amorphous Computing [1] and Swarm Programming [15]. Kondacs,

Chang, Frost, and Bloom of MIT have developed an amorphous computing approach for

1

assembling two-dimensional shapes, using decentralized, identically-programmed

agents [5, 21, 25]. Shape descriptions based on origami [24] and growing points [9] have also been

explored. However, all approaches have relied upon the shape already being represented in a

traditional computer, using this representation to program these agents. This thesis project

developed a decentralized approach for mapping unknown, arbitrary, two-dimensional shapes to

produce a description accessible to a traditional computer.

1.2.1 Project Context

In discussing amorphous computing research it is helpful to define a few terms:

• Cell: A model of an entity (e.g. a biological cell, ant, small robot, or sensor), vulnerable to

death and with limited computing power, that can communicate with nearby neighbors.

• Amorphous Computer: A myriad of cooperating, identical, dynamically interconnected cells

whose local cooperations result in large-scale predictable behaviors. These cells also have no

global knowledge of topology or cell locations.

• Amorphous Computing: An approach to performing computations using a system

describable as an amorphous computer [1].

Forming and maintaining shapes using an amorphous computer has received much research

attention. Differentiation of shape shows that even though cells are identical in the beginning,

they are able to differentiate themselves in function and achieve a global behavior. Kondacs,

Chang, Frost, and Bloom have developed an amorphous approach to growing two-dimensional

shapes using self-assembling cells. In their model a cell assembles other cells, which in turn

assemble other cells, eventually forming a disc. From this disc other discs are grown, repeating

this process using the program contained within each cell. The result is a network of discs that

approximate the original shape and which are able to re-grow if cells or entire portions of the

shape are destroyed. The program running on all cells is generated by compiling the shape’s

description, a network of discs that fills an area approximating the true entity’s shape. An

example of this method is shown in Figure 1.1.

Nagpal developed an amorphous approach to growing two-dimensional shapes using a

language based on origami. From a description that describes the folding of surfaces, a compiler

2

Figure 1.1: Amorphous Shape Growing Steps
Kondacs, Chang, Frost, and Bloom’s shape formation using self-assembling, forming the shape of the letter
E. Left of the divider, the network of discs describing the shape. To the right of the divider, an amorphous
computer regrowing the mapped E, from a single cell, to a disc of cells, to a disc forming other discs, to discs
forming discs, to the shape E.

generates an amorphous program that grows the described shape [24]. Coore developed an

amorphous approach using a language based on growing points and tropisms [9].

Sensor networks and amorphous and swarm computing share many of the same design goals.

While both aim for large numbers of networked agents in dynamic environments, amorphous and

swarm computing differ in that their inspirations tend to be based on biological systems. There

has been work in routing and event detection, but this research, such as the Cricket system by

Priyantha et al at MIT [30], has generally assumed the existence of a small number of beacon

nodes, which could fail and would require special manufacturing and placement. However, some

research on distributed systems without special beacons has taken place. Work such as Simic and

Sastry’s of Berkeley on distributed location systems [33] and Wood and Stankovic’s of UVa on

avoiding hazardous areas [37], by creating borders of sensor nodes, may provide an interesting

base for the amorphous mapping of shapes. However, both of these works give only very coarse

shape descriptions as a by-product of other tasks.

Outside of shape formation, Coore [7] and later Nagpal and others [26, 27] have developed

amorphous approaches to building coordinate systems. Newton and Beal have developed a

method for implementing automata using an amorphous computer and implementing a functional

programming language on top of this [28].

1.2.2 The Problem: Amorphously Mapping Unknown Shapes

This thesis project devised a method of building a shape’s description, accessible by a

traditional computer, by amorphously mapping a two-dimensional shape. With this problem

3

solved, the description of the shape can be made accessible to a traditional computer, where it

can be transformed into other languages of shape description and analyzed or used to create cells

to regrow the original shape using existing amorphous shape growing methods. Additionally, the

developed method’s accuracy in describing shapes and its robustness to cell failures, among other

measures, has been analyzed.

1.3 Uses of Amorphous Shape Mapping

Three interesting types of descriptions can be generated from an amorphous shape mapping

computer:

1. Connectivity of shapes in the region

2. The shape in terms of sampled points in a plane

3. The shape as a polygon

Chapter 4 describes and analyzes the ability of the developed method to enable the

generation of these three types of descriptions.

Such shape descriptions can be taken advantage of by work in computer vision, automated

mapping, and many other areas. Amorphous shape mapping could be used as a safer alternative

to X-Ray usage, to map areas traditionally thought to be too hazardous for even machines, to map

planet surfaces, to locate lost items, or to draw in resources from another amorphous computer to

a discovered resource or warn an amorphous computer of a hazard. Section 5.2 discusses these

specific uses further, as well as discussing social and ethical ramifications of such uses.

1.4 Overview

This report begins with a review of previous work in amorphous computing, swarm

programming, and sensor networks. Additionally, background biological information is given in

the report as its illustration gives insight to the developed methods or assumptions. Chapter 3

presents the method’s assumptions, a cell program’s primitive actions, and builds the developed

method atop these. Next, Chapter 4 presents and discusses the methods used for and results of

testing the developed method. Chapter 5 concludes the report, summarizing and interpreting the

4

results, discussing the social and ethical context, and discussing the future directions of this

project’s work.

5

Chapter 2

Background

This section of the proposal briefly reviews past work on related problems and should aid the

reader in better understanding the concepts behind this project. The literature behind this thesis

falls into two categories: amorphous and swarm computing and sensor networks.

2.1 Amorphous and Swarm Computing

Much of engineering, and especially computer science, has tended to depend upon underlying

foundations being perfectly functional. Amorphous computing, begun by Gerry Sussman, Harold

Abelson, and Tom Knight, Jr., is a project with the aim to develop principles and abstractions for

using myriads of non-centrally controlled devices without this requirement of perfection. Swarm

Programming has similar goals, focusing on systems where agents move as opposed to being

static [10, 11]. The aim of amorphous computing and swarm programming is to develop models of

organization allowing global behaviors to come from localized behaviors and abstractions of these

models to allow programs to be composed without knowledge of the underlying system, all the

while making use of properties sought after through amorphous computing. Many of these models

are based on biological systems, which exhibit properties very similar to those sought after in

amorphous computing, especially developmental biology [34, 35] and processes such as

morphogenesis [4].

The first stage in developing amorphous computing is thus creating systems capable of

communicating and organizing, developing models which will serve as foundations for further

development, and assessing these. Coore, Nagpal, and Weiss of MIT’s Project MAC began this

6

research, as microfabrication and nanotechnology were on the horizon, studying group structures

in amorphous computers [8]. Research on establishing coordinate systems followed, forming the

idea of using gradients to propagate messages using only local interactions [7, 26]. While these

ideas have already allowed for higher level development, research in coordinate systems is still a

cutting edge area [27].

As this first stage began to offer a base to build abstractions upon, research making use of

this base began to tackle higher levels of amorphous computers. Several approaches taking

advantage of computer science, to manage complexity, as well as biological models, to achieve

robustness, were developed [25], building targeted languages containing a small set of primitive

operations to describe shapes and topology. These include Coore’s metaphor of growing points

and tropisms [9], Nagpal’s metaphor of paper folding [24], and Kondacs, Chang, Frost, and

Bloom’s representation as networks of discs [21]. An example of building on earlier work, the

networks of discs method implements programs described in its language using replication,

gradients, and competition among cells.

All approaches to describing shapes to date have relied upon the shape already being

represented in a traditional computer, using this representation to program the cells which will

regrow the original shape. The aim of this thesis was to develop a method of amorphously

mapping arbitrary two-dimensional shapes, building on previous research’s ideas for organization

and the abstractions developed for regrowing shapes.

2.2 Sensor Networks

Sensor networks and amorphous and swarm computing, begun in the last decade, share many

of the same design goals. While both aim for large numbers of networked agents in dynamic

environments, amorphous and swarm computing differ in that their inspirations tend to be based

on biological systems. There has been work in routing and event detection, but this research, such

as the Cricket system by Priyantha et al at MIT [30], has generally assumed the existence of a

small number of beacon nodes, which could fail and would require special manufacturing and

placement. Some research on distributed systems has taken place, however. Work such as Simic

and Sastry’s of Berkeley on distributed location systems [33] and Wood and Stankovic’s of UVa

on avoiding hazardous areas [37], by creating borders of sensor nodes, may provide an interesting

7

base for the amorphous mapping of shapes. However, both of these works give only very coarse

shape descriptions as a by-product of other tasks.

8

Chapter 3

Mapping Method

This chapter begins with a description of an example method for using an amorphous

computer to map shapes that will serve as motivation for more explicitly looking at the

assumptions a method makes. The developed method’s assumptions about the environment, cells,

and observer are then stated and discussed. The primitive actions of a cell, which follow from the

method’s assumptions, are then given. The developed model, building on these primitives and

making use of the given assumptions, is then described.

3.1 An Example Method

One approach to using an amorphous computer to map a shape would be:

1. Drop a collection of cells over the region where the shape is likely to be

2. Upon landing, each cell:

(a) Broadcasts a message to all other cells, stating it sent this message and whether it is

on or not on the shape

(b) Listens for messages sent by others, also recording the origin of each message, until it

has heard from all cells in the collection

3. An observing computer can then retrieve any one cell and query it for the relative positions

of all the other cells, producing a description of the shape

9

This approach would produce a description of the shape, but only when the approach’s

implicit assumptions are met. Let us examine some of these assumptions and see what

implications they have for implementations.

The first action a cell must be able to do is sense whether it is on the shape or not. With this

information it can then broadcast to other cells its status. Sensing whether a cell is on the shape

seems feasible, for example, readily available small and simple light intensity sensors would detect

whether or not they were on top of a computer monitor. Moving on, however, two assumptions

especially stand out as severely limiting the usefulness of this approach: broadcasting data to all

cells and requiring all cells to hear broadcasts from all other cells to know the sensing is complete.

Broadcasting a message to all other cells requires a cell to be able to send a strong enough a

signal to cover the entire region being explored. Thus, cells would either need to be customizable

for differently sized regions, or if they are not customizable, the size of the explorable region

would be limited to a fixed size. Additionally, the number of messages a cell must process and

store scales linearly with the number of cells used, increasing the amount of energy required and

either processing speed or time spent sensing.

Requiring a cell to hear from all other cells implies all other cells will send a message, that no

cells will fail. As probability shows, the chance of a single failure, P , of k independent systems is

exponentially related to k and the probability a given system will fail, p: P = pk [32].

3.2 Assumptions

Section 3.1’s example amorphous shape mapping computer illustrated the importance a

method’s assumptions are to the method’s usefulness and serves as motivation for explicitly

stating and assessing the assumptions of this thesis’ developed method. These assumptions follow

from the desired applications of an amorphous mapping computer, using large numbers of

inexpensive cells to gather information about the desired shape, later describing the explored

region to a traditional computer.

3.2.1 Environment

Assumption 1 During the time cells are sensing the environment, the environment remains

static. More precisely, within the time cells are sensing, it does not matter when a cell determines:

10

1. Whether or not it is on the shape

2. Its relative location to another cell

This assumption removes the need to cope with data recorded at different times. For

example, cells which move and come into contact with different cells throughout the sensing

period, or, for cells which might float away from the shape. Further, many shapes are static, such

as a plate, or may change slowly compared to the rate of mapping.

Assumption 2 Cells can be transported to the region containing the shape to be mapped.

Assumption 3 The shape to be mapped is two-dimensional.

No other assumptions about the shape, for example a need to be closed, connected, or

convex, are needed for the developed cells. The method used to reconstruct the mapped shape

from the data queried from the amorphous computer may, however, impose additional

environmental assumptions. For example, the polygonal shape description used in Section 4.4’s

analysis assumes there exist no holes in shapes.

3.2.2 Cell

Assumption 4 A cell can sense whether or not it is on the shape to be mapped with perfect

reliability.

An example of a small and inexpensive sensor, for light, was given in Section 3.1. The

requirement for perfect sensor reliability may be possible to remove depending upon what

information the observer wishes to rebuild and whether small errors are acceptable. For example,

Section 4.4 presents a method for computing the convex hull of the mapped shape. This method’s

correctness is not affected by any non-border cell’s sensor incorrectly reporting to not sense the

shape.

Assumption 5 Cells have memory and can perform tasks upon receiving messages.

Having memory and simple processing abilities allows cells to accumulate data. It should be

kept in mind that his memory may be a small, fixed amount, and that the processing, if even

performed by a CPU, may be done using a low-speed CPU. Low power consumption, small device

11

size, and low cost are often essential in small nodes. For example, Berkeley’s Mica Mote, pictured

in Figure 3.1, uses a 4MHz processor with 4kB of ram and 128kB for program storage [18]. A

method whose cell memory requirements are constant or sub-linear as a function of the number of

cells is strongly desired given such resource-limited hardware. Once the data is available to a

traditional computer, more resource intensive algorithms may be employed to take advantage of

the gathered data.

Additionally, cell processor speeds may vary. Mass manufactured systems often vary from

production run to production run, and even individual item to item. It is assumed cells cannot

depend on closely-related timings.

Figure 3.1: Berkeley’s Mica Mote
On the left, Berkeley’s Mica Mote. On the right, the newer Spec on top of the Mica’s cpu.

Photos reproduced from JLH Labs: http://www.jlhlabs.com/jhill_cs/spec/.

Assumption 6 Cells have at least low-bandwidth communication with nearby cells.

Global communication, as discussed in Section 3.1, requires significantly greater processor or

communication abilities. The assumption that short range communication is feasible stems from

short-range communication being present among entities in nature, from bird chirpings to

chemical gradients inside cells. Additionally, other projects, such as Berkeley’s Motes and MIT’s

Amorphous Computing, use local communication for the same reason. Positioning using beacons

or a GPS system similarly likely has too significant processing and hardware sophistication

requirements, so cells must be able to determine their physical relations solely through local

interactions.

Reconstructing the connectivity of cells only requires messaging in the developed method.

Reconstructing the geometrical shape may also make use of an approximate distance and

12

http://www.jlhlabs.com/jhill_cs/spec/

direction from the sender, though this is not required. As Lawrence notes, cell polarity plays a

critical role in organism development, providing biological support for this assumption [23]. It is

assumed that message sensors can determine into which of k ranges a message’s distance and

direction fall into. This information is then used by a traditional computer to recompute the

sender’s relative location. As the number of neighbors a cell has increases, the number of range

distinctions needed by a cell decreases. Distance and direction information may be collected by

analyzing properties of the communication medium, such as radio signal strength. Or, other cells,

sprinkled about, running a different amorphous computing program, could be used. These other

cells would carry the message, keeping track of the number of hops, as described in [26, 27]. Using

this method, sensors with only on and off sensing give accurate information.

Assumption 7 Cells can fail unexpectedly. Cells either work perfectly or have failed completely.

As noted in Section 3.1, with tens or hundreds of thousands or more cells, the probability is

that some cells will fail. To help simplify this model it is assumed that a cell either works or does

nothing, that it will not inject incorrect data into the amorphous computer. Failsafe designs have

long been studied in engineering, though these sometimes require additional complexity, and even

with failsafe cells intentionally-incorrect information could still be injected into the computer, by

malicious nodes, for example. Messaging among cells is also assumed to either work or to fail

completely. Building reliable communication systems on top of unreliable systems is a

long-studied problem. For example, TCP/IP provides reliable messaging on top of the unreliable

transport IP [19].

Assumption 8 There exists a cell that can communicate with both other cells and a traditional

computer.

To pass on the amorphous computer’s gathered data there must exist a way for the

amorphous computer to transfer this data to a traditional computer. Whether only one cell with

this capability is required or the predominance of the cells do is decided by the querying method

used, this is discussed in Section 3.4.3. It is likely that the hardware present to communicate with

other cells can also be used to communicate with a traditional computer, such as a radio link.

However, were the cells to communicate using the diffusion of chemicals, a non-chemical means of

communication may be needed as well.

13

Assumption 9 Each cell has a unique id.

Radios, to PDAs, to power supplies have unique serial numbers. Walmart and Target are

moving to label every piece of their merchandise with an RFID tag, which transit their unique id

via radio. Manufacturers have for some time been able to mass manufacture identical units with

unique ids.

Assumption 10 Cells are able to determine when mapping is complete.

A traditional computer can only make use of information present, so cells need a way of

determining whether mapping is complete or not. At the cell level this is easy, a cell just

remembers when its sensor is done. Local neighbors of cells can inform each other when each cell

is complete. Sending completeness data beyond the local level may be unacceptably expensive,

however. In this case, an upper bound on the time needed to map the shape is likely known a

priori, cells can use this knowledge to largely be correct in determining when the mapping is

complete. Note, though, that a cell with incomplete information could likely be treated as a failed

cell would be, and since it is not assumed that all cells will function correctly, it is okay if a small

number of cells do not complete their sensing.

3.2.3 Observer

Assumption 11 A traditional computer can communicate with at least one cell after the cells

have finished sensing.

A traditional computer needs to be able to query the gathered information from the

amorphous computer. The traditional computer may simply contact cells after they are complete,

or it may be required that cells move away from the shape to a region where they can be

communicated with. Cell querying is presented in more detail in Section 3.4.3.

A traditional computer may also not be able to communicate with the amorphous computer

while the shape is being mapped. As discussed in [13], the amorphous computer may have been

chosen because the region to be mapped is too hazardous for traditional computers.

14

3.3 Cell Primitives

The primitive actions a cell may perform in the developed method of using an amorphous

computer to map a shape follow from assumptions of the environment, cell, and observer. A cell’s

primitive actions are listed in Figure 3.2.

1. Send and receive messages to and from nearby cells, informing neighboring cells whether a
cell is on or not on a shape and the cell’s id. When receiving a message, determine in which
of a fixed k∈ [0,∞) ranges are the distance and direction to the message’s sender.

2. Sense whether it is on or not on the shape.

3. Store messages from neighbors.

4. Read its unique id.

5. Some or the predominant number of cells can communicate with a traditional computer.

Figure 3.2: A Cell’s Primitive Actions

3.4 Method

With the assumptions laid out and cell primitives stated, this section presents the developed

method of mapping shapes using an amorphous computer. This task is subdivided into four:

1. Placing cells onto the region to be mapped

2. Mapping the region

3. Querying gathered information from cells

4. Analyzing the queried information

This thesis project’s focus was the development and assessment of the second task, the cell

model and how cells acquire information and interact with other cells to gather and represent

information about the intended shape. Examples of how cells can be placed are also given, though

placement is largely unrelated to the amorphous computing aspect of the overall task. Querying

cells is also discussed briefly, cell querying has already received considerable research, through the

study of sensor works and especially sensor network databases. A traditional computer is

15

assumed to analyze the queried information, examples are given in the analysis of the developed

mapping method in Chapter 4.

3.4.1 Placing Cells

A number of techniques exist which could be used to transport cells to the region to be

explored. The cells could be placed by machine or dropped from a plane. A machine would be

more useful in covering small areas, whereas dropping cells would be helpful when the region to

be mapped is too hazardous to move closer to. Analogous to the healing of wounds, cells could

instead be placed around the region containing the shape and could grow inwards [16, page 714].

Nagpal et. al. have studied amorphous computers making use of cell growth [25]. With the cells

placed in the region containing the sought for shape, we discuss the algorithm ran on each cell.

3.4.2 Mapping the Region

The cell program ran on each cell, Cell-Shape-Mapping-Program, is given in Figure 3.3.

Source to the cell program used for simulation is contained in the file shape cell.cpp in the

source available at [12]. Each cell runs the cell program independently of other cells. Each cell’s

required amount of storage is a linear function of the number of neighbors. The expected number

of neighbors for cells is a logarithmic function of the number of cells to be used, as shown and

further analyzed in Section 4.5.

3.4.3 Querying Cells

Cells could aggregate all their information to one cell, which would communicate with a

traditional computer, but Assumptions 5 and 7 mean this approach is likely too expensive in

resources, needing to scale with the number of cells used, and is dependent on a sole cell. This

information could be stored in a number of cells, but this only adds to the required

communication. Instead of aggregating information and then reporting it, the traditional

computer could query the network as a whole, as research in sensor networks has studied.

However, the added communication may again be unacceptable for lower power systems.

A traditional computer could instead query most or all of the cells directly. This approach

modifies Assumption 8, cells must generally be able to directly communicate with the traditional

computer. However, as discussed in Assumption 9, mass manufactured products are beginning to

16

Initialize()
1 haveSampledEnv ← false

Cell-Shape-Mapping-Program()
1 if haveSampledEnv = false
2 then Send-Message(id, On-Shape())
3 haveSampledEnv ← true
4 newMessages← Get-New-Messages()
5 if newMessages 6= nil
6 then Process-New-Messages(newMessages)
7 stepsSinceLastMessage← 0
8 else Increment(stepsSinceLastMessage)
9 if stepsSinceLastMessage ≥ stepsToWait

10 then Communicate-With-Computer()
11 else Cell-Shape-Mapping-Program()

Process-New-Messages(newMessages)
1 n← length[newMessages]
2 for i← 1 to n
3 do msg ← newMessages[i]
4 id← Get-ID(msg)
5 onShape← Get-On-Shape(msg)
6 dir ← Get-Direction(msg)
7 dist← Get-Distance(msg)
8 Append(neighborMessages, <id, onShape, dir, dist>)

Figure 3.3: Shape Mapping Cell Program
The cell program ran by amorphous computing cells to map a shape’s area.

have this ability, such as with RFID tags. Additionally, not all cells need to have this ability

because location information about a cell is independently stored by several cells. This

requirement is stated in the listing of cells’ primitive actions, Figure 3.2, and used in the

simulation of the developed method in Chapter 4. To be queried by a traditional computer, a cell

must be reachable. It may be the case that cells can be queried at the location of the shape, but

in at least some uses of shape mapping, environments are hazardous, so cells must be transported

to the computer. Mimicking slime molds, upon receiving a signal, cells could aggregate and travel

together until they find an acceptable location, where a traditional computer would query the

cells [36, page 260].

17

Chapter 4

Analysis and Discussion

In Chapter 3 the assumptions, primitive cell actions, and developed amorphous shape

mapping method were presented and discussed. Chapter 3 also showed assumptions to be

important in developing and selecting a method. However, they say nothing about models with

the same assumptions and do not help one to make tradeoff decisions for particular assumptions

in light of costs and goals. Additionally, while intuition from a method’s steps can help in

assessing a method, intuition can also be unknowingly misleading or incorrect. The most useful

assessment of a method is based on the same situations one is planning on putting the method to

use for. This chapter thus analyzes the developed amorphous shape mapping method with regard

to the three types of identified descriptions, describing the methods employed to assess the shape

mapping method under varying conditions, the relevance of the chosen methods of analysis to the

use of the developed shape mapping method, the results, and discussion of these results.

Analytical requirements on an amorphous shape mapping computer’s parameters are also derived.

4.1 Simulation Environment

A simulator was developed to simulate cells running the algorithm given in Figure 3.3 and the

cells’ environment. Given a collection of cells and the region to be mapped (described as a bitmap

graphic), the simulator distributes the nodes throughout the region with uniform randomness.

Each cell then runs asynchronously in its static position on top of the given region,

communicating with other cells through the simulator’s provided messaging system which allows

cells to communicate with their neighbors. The simulator transparently executes and handles

context switching among the cells, executing them in random order. When cells have completed

18

running, a traditional computer queries each of the cells to ascertain whether or not they were on

the shape and for the information gathered on their neighboring cells. This queried data is saved

to a file, from which other programs can analyze the amorphous computer’s results just as they

would were the cell program ran outside of a simulator. The C++ source to the developed

simulator, as well as tools developed for analysis, are available from [12].

Throughout the analysis, the developed amorphous shape mapping computer is used to map

the three regions shown in Figure 4.1. The simulated cells in these analyses are fitted with black

sensors; cells know whether underneath them is black or not. The leftmost figure, a circle, is a

convex shape with large area, which should be easy to find and map. The second region contains

four disconnected shapes, a circle, a rectangle, the letter π, and a shape containing a hole. The

third region tests the amorphous computer’s ability to describe text. Each connectivity, sample

point, and polygonal description experiment, documented in Sections 4.2, 4.3, and 4.4, varies one

independent variable, using 5000 cells, a cell neighborhood size of 10, a space of width 200 and

height 200, 100% cells queried, distance and direction sensors with twenty levels of resolution, and

is tested with each of the three regions. Although all cells used the same resolution sensors, this is

not required of the developed mapping method or analysis algorithms. As can be calculated from

Section 4.5, the expected number of cells in a given cell’s neighborhood, E[nnghbrs], is thus

25
2 π ≈ 40. The three variables tested analyzed how the accuracy varied with the number of sensor

resolutions, the expected number of cells in a cell’s neighborhood, and the percent cells queried.

Figure 4.1: Regions and Shapes Used in Analysis
The regions used for analysis, from left to right, circle, four, and UVa.

19

4.2 Connectivity Description

An obvious application making use of knowing the connectivity of shapes in a region is

determining the number of shapes present, determined by counting the number of disconnected

subgraphs in the undirected graph. Intuitively, an undirected graph is a collection of objects with

connections between them. A disconnected subgraph is a collection of the objects in this

undirected graph, which have only connections among themselves, there exist no connections from

these objects to other objects in the graph. Rosen provides a broad introduction to graph theory

in [31, Chapter 7]. Building connectivity information only requires cells to be able to message

their neighbors, Cell Primitive 1’s (page 15) requirement for the ability to determine the distance

and direction to the sender of a message is not needed. Removing this requirement allows for the

use of much simpler, and thus less costly and smaller, cells.

Surprisingly, it was found that even cells without the ability to determine the distance or

direction to message senders, thus only making use of cell connectivity information, provide

enough knowledge for shapes to be reconstructed using existing graph visualization tools. The

program neato, part of the Graphviz suite from AT&T Research, was used in this analysis to

generate graph visualizations [22]. Further, this approach to shape reconstruction was found to

produce more accurate mappings than cell-location methods do when the number of

distinguishable ranges is small. The produced connectivity graph is independent from the

physical size of the region mapped, but, cells likely have known communication distance limits,

and so scale information can be obtained as well if useful.

4.2.1 Method

In addition to the queried connectivity data allowing a traditional computer to determine the

topology of cells and number of shapes in the mapped region, existing graph visualization

software, especially useful to circuit layout such as Very Large Scale Integration (VLSI) and

Printed Circuit Board (PCB), was given the cell connection information to produce graphical

visualizations. The program neato, part of AT&T Research’s Graphviz suite, which processes

undirected graphs, was used for visualization generation [14, 22]. The visualizations produced

using neato were created using the queried cell-cell connectivity information for on-shape cells,

cells not on areas being mapped were not included because of the added computational

20

complexity.

4.2.2 Results

The output from neato for the data queried from the amorphous computer for the three

shapes are shown in Figure 4.2. Note that cells not on shapes were not used for shape

reconstruction, thus the reconstructed shapes’ orientations and relative locations are incorrect.

The recomputed shapes resemble the mapped shapes even down to the cell level, aberrations are

even largely preserved. The circle and four shapes are more accurately reproduced than UVa.

UVa’s longer, slender pieces, as found in the U and V are troublesome. The letter a is more

accurately reproduced. The amorphous shape computer’s results were only analyzed for the tests

shown in Figure 4.2 because neato’s runtime was too significant, taking as long as two days for a

5,000 cell deployment, to process results as was done for the point sampling and polygonal

description tests.

Figure 4.2: Connectivity Graph Descriptions
Shape reconstruction using only connectivity information for the shapes circle, four, and UVa.

The top row, the actual positions of cells, the bottom row, the shapes’ reconstructions.

When a subgraph becomes disconnected from the rest of the cells it is not possible for the

amorphous computer to determine the relationship between the two subgraphs. The existence of

21

disconnected subgraphs is not the important factor, but rather, the number of cells not connected

with the largest connected subgraph and their distribution in the region is. For example, were a

random 10% of the cells not connected, much less information about the shape would likely be

lost than if the same number of cells, which were clustered together, were lost. As the processing

required by neato was too lengthy to do significant experiments, disconnected subgraphs were not

useful to analyze for the connectivity description. However, the effects of disconnected subgraphs

was analyzed for the sample point and polygonal bound descriptions in the following two sections.

Higher level software, with further knowledge of the region’s characteristics, may be able to

reconnect disconnected subgraphs. For example, knowing a square is being mapped and finding

the amorphous computer to have mapped a small square and a larger square with a small square

chunk removed, it would be likely that the smaller piece belongs in the larger piece’s hole.

It should be noted that a cell failing before sending its initial message directed by the cell

program (Figure 3.3) affects the results queried from the amorphous computer differently than a

node failing to relay its stored information to the traditional computer. In the latter case, other

cells have stored information about the failed cell; whereas in the former, no cells have any

knowledge of the cell’s existence.

4.3 Sample Point Description

While cell connectivity information can be used to reconstruct the mapped shape, the

amount of computational work for reconstruction may be infeasible for large numbers of nodes.

More importantly, making use of a cell’s ability to record relative distance and direction

information for message senders adds a second dimension, which can be used in shape

reconstruction, allowing the creation of more accurate shape representations.

Describing shapes in terms of sampled points makes use of the direction and distance

information of message senders, stored by cells to reconstruct a cell’s physical relationship to the

whole. A greedy, breadth first search algorithm was developed which uses cells’ relative locations

to give them global coordinates. Describing the shape as a collection of points transforms the

problem of shape description such that computer graphics, which often deals with point

representations, can be pulled into use, moving the problem from the newer, and less developed,

area of amorphous computing to computer graphics, having several decades of research to build

22

upon. Existing pattern matching software could be used to identify the mapped shape. Another

interesting use comes from Ramani et. al.’s recent work on shape searching systems [20]: by

mapping a large area with the sprinkled components of an amorphous computer, objects could be

later queried for when trying to locate them.

4.3.1 Method

The greedy, breadth first search algorithm in Figure 4.3 was developed to give cells global

coordinates using the knowledge they gathered about neighboring cells. Given an initial cell to

place, it marks this cell as having the zero coordinate and then does a breadth first search for

neighbors. When a cell is first encountered, it is added to a first-in-first-out queue which is drawn

from to place cells with respect to their referring neighbor. As cells have no global orientation,

cell orientations are aligned as the cells are placed in the global coordinate system.

This algorithm was used because its implementation was not overly involved and its low time

complexity allowed for more experimentation than another algorithm might, but note that this

algorithm does not take advantage of multiple cells having knowledge of a cell when placing cells;

rather, only one cell’s knowledge is used. This algorithm is implemented as the function

generate cell shape cov() in the file shape cell analyzer.cpp, the implementation file for

the analysis program which reads the queried cell data. An analogous depth first search algorithm

was also tested. As placing cells using the fewest number of hops vs a long chain of hops would

lead one to expect, the breadth first search algorithm is significantly more accurate. Under the

tested conditions, more than one order of magnitude more accurate.

Cells were then given an artificial coloring, corresponding to the cell being on a shape and

hearing cells which reported not being on the shape (meaning this cell is a perimeter cell), a cell

being on a shape, or a cell not being on a shape. The colors given were black, yellow, and blue,

respectively. An image using the cell’s actual locations, which the simulator knew, was also

colored to compare with the image generated from the cell’s knowledge. These latter,

simulator-placing based images, were not colored specially for perimeterness, only the colors

yellow and blue were used. The results for each variable were analyzed qualitatively and

quantitatively, by assessing the produced images and by calculating the number of cells correctly

placed in space inside or outside of the shape by Figure 4.3’s algorithm. Note that randomly

placing cells and marking them as being inside or outside of the shape will produce cells correctly

23

Place-Cells(queriedData, firstCellsId)
1 placedCellLocns← <firstCellsId, New-Locn(0, 0)>
2 Place-Cell-Nghbrs(Nghbrs(firstCellsId)[0], queriedData, placedCells, placedCellLocns)
3 return placedCellLocns

Place-Cell-Nghbrs(cellId, queriedData, placedCellLocns)
1 cellsToP lace← nil
2 for each nghbrId in Nghbrs(cellId)
3 do Append(cellsToP lace, <cellId, nghbrId >)
4 while cellsToP lace 6= nil
5 do toP laceReferId, toP laceId← Remove-First(cellsToP lace)
6 if toP laceId /∈ placedCellLocns
7 then Place-Cell(toP laceId, placedCellLocns, toP laceReferId)
8 for each nghbrId in Nghbrs(toP laceId)
9 do Append(cellsToP lace, <toP laceId, nghbrId>)

Place-Cell(cellId, placedCellLocns, refCellId)
1 cellRelLocn, cellAngleOffset← Relative-Locn(cellId, refCellId)
2 cellLocn← cellRelLocn+ Locn(refCellId)
3 Append(placedCellLocns, <cellId, cellLocn, cellAngleOffset>)

Relative-Locn(toP laceId, referId)
1 toP laceAngleOffset← Orient-Cell-With-Refer(toP laceId, referId)
2 distance← Distance(toP laceId, referId)
3 angle← Oriented-Angle(referId, toP laceId, toP laceAngleOffset)
4 return D&A-To-Rel-Locn(distance, angle), toP laceAngleOffset

Orient-Cell-With-Refer(toOrientId, referId)
1 toOrientActualAngle← Oriented-Angle(referId, toOrientId, Angle-Offset(referId))− π
2 toOrientAngleOffset← toOrientActualAngle−Measured-Angle(toOrientId, referId)
3 return toOrientAngleOffset

D&A-To-Rel-Locn(distance, angle)
1 relX ← distance× sin angle
2 relY ← distance× cos angle
3 return New-Locn(relX, relY)

Oriented-Angle(aId, bId, aAngleOffset)
1 measuredAngle←Measured-Angle(aId, bId)
2 actualAngle← (measuredAngle+ aAngleOffset) mod 2π
3 return actualAngle

Figure 4.3: Cell Placement Algorithm
The algorithm used to generate cells’ global coordinates using their knowledge of message senders’
origins.

labeled as inside or outside of the shape 50% of the time.

24

4.3.2 Results

Number of Distinguishable Ranges in Message Sensing

Each round of testing was performed on cells having a different number of message distance-

and direction-sensing resolutions, tested with resolutions of 1–100. The produced images are

shown in Figure 4.4 and the graph of percent cells correctly marked is shown in Figure 4.5. With

resolutions as low as one or two, the produced images can be used to differentiate the samples.

By four to nine levels of resolution shapes’ descriptions are clearly identifiable. By 15 or 40 levels

of resolution the produced descriptions very closely resemble the actual positioning of the cells.

The accuracy of the produced description quickly rises as the resolution is increased from 1 to 15

cells, where it settles into the 95%–98% range. Using a global cell alignment, analogous to giving

each cell a compass, was found to reduce the number of resolutions required to 5 to obtain similar

accuracy as approximately 20 levels without global orientation.

Figure 4.4: Sample Point Descriptions: Number of Sensor Resolution
Cell positioning for the shapes circle, four, and UVa. From left to right: actual cell positions,

followed by positions using sensor resolutions of 2, 4, 9, 15, and 40.

25

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 o
f C

el
ls

 P
la

ce
d

C
or

re
ct

ly
, 1

=
10

0%

Number of Sensor Resolutions

% of Cells Correctly Placed ’In/Out Shape’ vs Sensor Resolution

circle
four
UVa

Figure 4.5: Correct Cell Placement vs Sensor Resolution

26

Number of Cells

Each round of testing was performed with varying total number of cells used, 500–20,000 cells.

The produced images are shown in Figure 4.7 and the graph of percent cells correctly marked is

shown in Figure 4.8. Figure 4.6 shows the expected number of neighbors for each of the tested

total number of cells, calculated using the derived value of E[nnghbrs], Equation 4.1 in Section 4.5.

Surprisingly, the developed placement algorithm is able to accurately place cells very soon in the

shown graph, by 600 cells greater than 90% accuracy is obtained. By 1,000 cells all three shapes’s

reproduced images are fairly recognizable, by 5,000 they are easily recognizable. The reason for

accuracy significantly increasing from 800 to 1,000 cells is that only the largest disconnected

subgroup is used for description generation by the cell placement algorithm and at the low end of

the number of cells placed, the number of disconnected subgraphs is significant. The distribution

of disconnected subgroup sizes is shown in Figure 4.9. At 1,000 and above cells, the number of

disconnected subgroups is 1, below this the largest disconnected subgroup’s size vs the total

number of cells quickly drops. This behavior is explained and analytically predicted in Section 4.5.

As the number of cells increases past a mid-number of cells, the accuracy of cell placement

decreases. This cannot be easily seen in the reconstructed images, but the behavior can be seen in

the accuracy graph by 10,000 and 20,000 cells. This is an artifact of the cell placement algorithm

used, which uses a greedy approach in placing cells. As the number of cells increases, the average

number of hops a given cell is from the initially placed cell increases logarithmically, increasing

the accumulated error. Making use of multiple cells having relative position information about a

given cell would likely lessen the loss of accuracy, it is not known whether this loss can be avoided.

Number of Cells 500 600 800 1,000 5,000 10,000 20,000
E[nnghbrs] 3.9 4.7 6.3 7.9 39.3 78.5 157.1

Figure 4.6: Number of Cells and E[n]
The expected number of neighbors for a given number of total cells in a region of size 200× 200.

27

Figure 4.7: Sample Point Descriptions: Number of Cells
Cell positioning for the shapes circle, four, and UVa. Each two rows are the results for a shape,
the first, the cells’ actual positions, the second, the cells’ calculated positions. From left to right,

500, 600, 1000, 5000, 10000, and 20000 cells.

28

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
er

ce
nt

 o
f C

el
ls

 P
la

ce
d

C
or

re
ct

ly
, 1

=
10

0%

Number of Cells

% of Cells Correctly Placed ’In/Out Shape’ vs Number of Cells

circle
four
UVa

Figure 4.8: Correct Cell Placement vs Number of Cells

Disconnected Subgroup Size Distribution for Varying Numbers of Cells

 0 10 20 30 40 50 60 70 80 90 100
% Total Cells in Group 500

 600

 800

 1000

Total # Cells in Region

 0

 2

 4

 6

 8

 10

Groups

Figure 4.9: Disconnected Subgroup Size Distribution vs Number of Cells

29

Percent Cells Queried

Each round of testing was performed querying a different percentage of the cells, from

10%–100%. The produced images are shown in Figure 4.10 and the graph of percent cells

correctly marked is shown in Figure 4.11. Varying the percentage of cells queried differs from

varying the total number cells because the former does not alter the cells’ interactions, only what

part of them the traditional computer can query for data. The accuracy of the description rises

above 90% very quickly, by 13% cells queried. Below this point, the number of disconnected

subgraphs is significantly large to prevent there existing enough usable data for the used cell

placement algorithm, similar to the case in Section 4.3.2. This behavior is explained and

analytically predicted in Section 4.5. The distribution of disconnected subgroup sizes is shown in

Figure 4.9. Once the accuracy rises, it largely stays in the > 90% range throughout the tests

through 100% cells queried.

Figure 4.10: Sample Point Descriptions: Cells Queried
Cell positioning for the shapes circle, four, and UVa. From left to right: actual cell positions,

followed by positions with percent cells queried 11, 13, 20, 75, and 100.

30

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

 o
f C

el
ls

 P
la

ce
d

C
or

re
ct

ly
, 1

=
10

0%

Percent of Cells Queried, 1=100%

% of Cells Correctly Placed ’In/Out Shape’ vs % Cells Queried

circle
four
UVa

Figure 4.11: Correct Cell Placement vs Percent Cells Queried

Disconnected Subgroup Size Distribution for Varying Percentages of Cells Queried

 0 10 20 30 40 50 60 70 80 90 100
% Queried Cells in Group 10

 11
 12

 13
 15

 20

% Cells Queried

 0

 2

 4

 6

 8

 10

 12

 14

Groups

Figure 4.12: Disconnected Subgroup Size Distribution vs Percent Cells Queried

31

4.4 Polygonal Description

Rasterizing a shape using cells to sample the given region provides a detailed description, but

a more manageable description would be more useful. For example, without knowing the bounds

of the shape the question “Is this point within the shape?” cannot be answered. A bounding area

also describes the sub-area of the region where the shape is located, reducing the size of the

search space where the shape is located, and provides a coarse description of the mapped object’s

shape and size. By describing a shape using a bounding polygon existing research, especially in

mathematics and computer science, can again be taken advantage of. A rectangle enclosing the

cells determined by the traditional computer during the data analysis of Section 4.3.1 to be

perimeter cells would provide such a bounding polygonal description. However, many other types

of polygons can provide considerably more detailed information about a bounded shape. The

method used in this section’s analysis calculates the convex hull of the perimeter cells to describe

the mapped shape.

Intuitively, the convex hull of a set of points is equivalently found by letting go of a rubber

band around the given points. The shape the rubber band takes is the convex hull of the points,

Figure 4.13 illustrates this. More rigorously, the convex hull of a set of points is the smallest

convex set containing the points. For a set to be convex means that given any two points in the

set, all points on the line connecting the two points are also in the set. Convex hulls have been

studied extensively in computational geometry; in fact, the first efficient algorithm for computing

the convex hull of a set began the field of computational geometry. The convex hull of a set of

points is often used to describe the shape’s outline, this is how it is used in this section’s analysis.

Preparata and Shamos give an introduction to the study of convex hulls in [29, Chapters 3–4].

Figure 4.13: Convex Hull Example
Left, a collection of points. Right, the convex hull of these points.

32

Describing the mapped shape as a polygon also provides an example case of the methods used

by a traditional computer affecting the assumptions made about the shape being mapped. In this

case, the convex hull of a shape will not contain information about holes in the mapped shape.

4.4.1 Method

The convex hull of the cells reporting to be found, whose global locations are determined

using Figure 4.3’s algorithm, is computed. To assess the accuracy of each produced convex hull,

random locations within the region are checked for being inside of or outside of the shape and the

percentage of times the computed convex hull’s answer is correct is recorded. 100,000 random

locations were tested for each produced convex hull. Note that randomly placing cells and

marking them as being inside or outside of the shape will produce cells correctly labeled as inside

or outside of the shape 50% of the time.

4.4.2 Results

The accuracy of the computed convex hulls was found to generally mirror the accuracy of the

computed point descriptions analyzed in Section 4.3. As the convex hull is computed using the

perimeter points of the point description, this is expected. However, the accuracy varied much

less among shapes for the convex hull description. Interesting results specific to each of the

performed tests are described with the tests’ analyses.

Number of Distinguishable Ranges in Message Sensing

This experiment’s parameters were the same as the experiment studying the effect of sensor

resolution on sample point description accuracy, analyzed in Section 4.3.2. The graph of percent

sampled locations correctly marked is shown in Figure 4.14. The accuracy of the computed

convex hulls varies considerably more than the point descriptions at the beginning stretch when

the accuracy approaches its asymptote. The asymptote has a higher degree of accuracy than the

point description, around 99% vs the point descriptions’ 95%–98%.

Number of Cells

This experiment’s parameters were the same as the experiment studying the effect of the

number of cells on sample point description accuracy, analyzed in Section 4.3.2. The graph of

33

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 o
f S

am
pl

ed
 L

oc
at

io
ns

 M
ar

ke
d

C
or

re
ct

ly
, 1

=
10

0%

Number of Sensor Resolutions

% Locations Correctly Marked ’In/Out Shape’ vs Sensor Resolution

circle
four
UVa

Figure 4.14: Convex Hull Shape Description: Number of Sensor Resolutions

percent sampled locations correctly marked is shown in Figure 4.15.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
er

ce
nt

 o
f S

am
pl

ed
 L

oc
at

io
ns

 M
ar

ke
d

C
or

re
ct

ly
, 1

=
10

0%

Number of Cells

% Locations Correctly Marked ’In/Out Shape’ vs Number of Cells

circle
four
UVa

Figure 4.15: Convex Hull Shape Description: Number of Cells

Percent Cells Queried

This experiment’s parameters were the same as the experiment studying the effect of the

percent of cells queried on sample point description accuracy, analyzed in Section 4.3.2. The

34

graph of percent sampled locations correctly marked is shown in Figure 4.16.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

 o
f S

am
pl

ed
 L

oc
at

io
ns

 M
ar

ke
d

C
or

re
ct

ly
, 1

=
10

0%

Percent of Cells Queried, 1=100%

% Sampled Locations Correctly Marked ’In/Out Shape’ vs % Cells Queried

circle
four
UVa

Figure 4.16: Convex Hull Shape Description: Percent Cells Queried

4.5 Largest Connected Cell Subgroup Behavior Explanations

and Predictions

As noted, the experiments varying the number of neighbors, by changing the number of cells

placed or the percent of placed cells queried, gained their accuracy only after passing an initial

critical number of cells. Though this was not tested for the connectivity description, it was

observed for both the sample point and polygonal bound descriptions, and is expected to hold

true for the connectivity description as well. It was observed that below this critical point, there

existed many groups of cells, each containing a small percentage of the total cells. Above the

critical point, there existed one group which contained nearly all cells, and perhaps a small

number of groups of a few cells. The developed method and description generation algorithms

rely upon a path existing from cell i to cell j to be able to position these cells relative to each

other. Thus, to be able to describe the shape of the entire region, one intuitively sees that there

must be cells throughout the region, all connected in one subgroup. This agrees with the observed

groupings. In setting up a deployment of an amorphous shape mapping computer, it might be

helpful to know, where N is the set of deployed cells and nnghbrs(c) is the number of neighbors

35

within the given cell c’s communication radius r, P (∃c∈N : nnghbrs(c) 6= 0). Even more useful

would be to find, where C is the largest connected subgroup, P (|C| ≥ k) as k →∞.

Unfortunately, exact values are not known for either of these probabilities [6].

The value P (nnghbrs(c) = k) can, however, be derived. This is the same as there existing

exactly k points in an area of size πr2. As cells are uniformly randomly distributed through the

region, the number of points in cell c’s communication disc is binomial, with p = πr2

a and n = |N |,

given that a is the area of the region being mapped. It follows that

P (nnghbrs(c) = k) = (n
k) pk(1− p)n−k, for k∈ [0, n]. Assuming a is large compared to πr2, this can

be approximated by a Poisson distribution: P (nnghbrs(c) = k) ≈ (πr2n/a)k

k! e−πr2n/a. And so for our

question, k = 0: P (nnghbrs(c) = 0) = (1− πr2

a)n ≈ e−πr2n/a. While this may be interesting, what is

really important is not the existence of a single lone cell, but the existence of a large connected

subgroup. It was seen experimentally that E[nnghbrs] for the computer rose with the size of the

largest connected subgroup, thus, knowing E[nnghbrs] is of some help in guaranteeing a large

connected subgroup. Having determined P (nnghbrs(c) = k) using the binomial distribution,

E[nnghbrs] and Var[nnghbrs] follow [32, Chapter 4]:

E[nnghbrs] = np =
nπr2

a
(4.1)

Var[nnghbrs] = np(1− p) = nπr2(1− πr2/a)/a ≈ np =
nπr2

a
(4.2)

While it appears that the observed significant change in shape description accuracy is a

function of E[nnghbrs], it does not explain why the change occurs as quickly as it does. The

observed accuracy certainly does not appear to be a linear function of E[nnghbrs]. Nor does it

predict the needed E[nnghbrs] to be above this critical point; in deploying an amorphous shape

mapping computer, it would be very useful to know a bound for this number. These and similar

questions are in fact well studied, arising in many other areas, by percolation theory.

Mathematicians call a large connected subgroup arising, “the emergence of a giant component,”

physicists call it percolation, that a phase transition occurred, sociologists say a community has

been formed [3, Chapter 2]. In high school, this phenomenon arises through acid-base titrations in

chemistry. A base or acid is slowly added to a container of an acid or base, when suddenly the pH

level changes from acidic/basic to basic/acidic in only one drop. This section of analysis explains

the observed behavior of connected cell subgroup size and provides analytical solutions for the

36

deployed computer’s parameters to place the system above the critical point so that the entire

region may be described by the amorphous shape mapping computer.

4.5.1 Background and Observed Behavior Explanation

Percolation theory studies fluid flow in random mediums. Bond percolation, where

connections between points are randomly placed, is analogous this thesis project’s developed

method. Note that in the developed method, edges are not completely randomly placed, the

distance between two cells determines their placement. However, this simplification nonetheless

provides helpful insights. In determining more specific required parameters in Section 4.5.2, cell

distance is also taken into account. The following explanation assumes two dimensions, though

percolation often concerns the problem in general.

Rephrasing the described rapid, significant change in largest subgroup size more formally,

percolation theory shows that for many types of randomly constructed systems, where the

probability that an edge exists is p, there exists a critical value pc such that when p ≤ pc,

Pp(|C| =∞) = 0 as n→∞, where C is the largest connected subgroup. And when p > pc,

Pp(|C| =∞) = 1 as n→∞. This probability is known as the percolation probability and is one

of the principal quantities in percolation, it is written θ(p) = Pp(|C| =∞) in the literature. Then,

pc is defined as sup{p : θ(p) = 0} [17, Chapter 1].

θ(p) shows there will exist a large connected subgroup when p > pc, but it does not describe

the subgroup’s geometry. The top corner of the region, for example, may have no cells connected

to C. Percolation shows this will not happen, however. Similar to the case with θ(p), the

probability that the large connected subgroup contains a path from the leftmost to the rightmost

point, Pp(LR(k)), also approaches 1 as k →∞ [17, Chapter 8.8].

For this project’s square lattices, it is known that pc = 1
2 [17, Chapter 11.3]. With θ(p)

formally defined, the probability that there exists a cluster of infinite nodes is defined as

ψ(p) =

 0 if θ(p) = 0,

1 if θ(p) = 1.

Very helpful in deploying a shape mapping computer is knowing the value of χ(p) = Ep[|C|].

For p > pc, χ(p) =∞; the converse is also true, for p ≤ pc, χ(p) <∞. This simply shows that if p

37

can be made to be greater than pc, there will exist a large connected subgroup. The same

behavior is true for the connectivity of two points. Making use of the FKG inequality, for the

increasing random variables X,Y that Ep[XY] ≥ Ep[X]Ep[Y] [17, Chapter 2.2], the probability

that two points x, y are connected is: Pp(x↔ y) ≥ θ(p)2. Remembering that for p > pc, θ(p) = 1,

Pp>pc(x↔ y) = 1. The probability that Pp>pc(x↔ y, through a finite-sized subgroup) decays

exponentially as the number of nodes increases [17, Chapter 8.5].

Percolation theory also predicts the rapid change from very coarse to fine shape description

accuracy [17, Chapter 1]. It is known that the subcritical phase’s tail of |C| decreases

exponentially, Pp(|C| ≥ k)∈Θ(e−k) [17, Chapter 6.3]. It is also known that the probability of the

existence of finite-sized clusters approaches zero with exponential decay once p > pc [17, Chapter

1]. In fact, it is know that Pp(|C| = k)∈Θ(e−
√

k) [17, Chapter 11.4].

While all this shows there will exist a large connected subgroup covering the region being

mapped when p > pc, it does not show whether there could exist multiple such subgroups. Such

an existence would lower accuracy of the shape description, as it would lower E[nnghbrs] and the

relative locations of the multiple subgroups would not be determinable [17, Chapter 1].

Percolation shows that, in fact, Pp>pc(∃ exactly one infinite open cluster) = 1 [17, Chapter 8.2].

Helpful in further analysis of these described functions, it is known that that θ(p) is

continuous on (0, 1], that it is a nicely behaving function [17, Chapter 8.3]. It is also known that

the so the described critical phenomenon exists. And, that pc∈(0, 1).

Figure 4.17 summarizes many of the above described behaviors given p’s relation to pc.

p ≤ pc p > pc

θ(p) 0 1
χ(p) <∞ =∞
|{C : |C| =∞}| 0 1
Pp(k ≤ |C| <∞) Θ(e−k) Θ(e−k)

Figure 4.17: Graph Connectivity Behavior Summary
Summary of a graph’s connectivity behavior given p’s relation to the critical probability pc.

Reproduced from [17, Table 9.1].

4.5.2 Required Parameters for Complete Cell Connectedness

The previous section explained the largest connected subgroup’s size’s experimentally

observed behavior when varying the number of neighbors and determined the needed p to obtain

38

a single large connected subgraph. However, the relation between the parameters of the system

and p was not described. Without knowing how to relate p to the number of cells, size of the

region being mapped, and cells’ communication radius, percolation is limited to explaining

general behaviors and giving insight to these parameters’ values. If p can be related to these

parameters, however, specific expressions can be derived to aid the setup of an amorphous shape

mapping computer. This exact relationship is an open problem, but Xue and Kumar in [38] prove

upper and lower bounds connecting a cell’s nnghbrs and the value of ψ. nnghbrs can then be related

to the number of cells, cells’ communication radius, and the region being mapped’s area. Their

work disproves the common belief of the existence of a magic number for nnghbrs for a graph to be

completely connected, such as Kleinrock and Silvester’s first proposed value of six and others’

proposals of similar fixed values [38].

The assumption in 4.5.1 that an edge exists randomly and independently of the existence of

other edges, a Bernoulli random graph, must be made more accurate to find a useful requirement

for θ(p) = 1 for the developed method. In the developed method, an edge exists between a cell x

and every cell y such that the Euclidean distance between x and y is less than cells’

communication radius, r. Xue and Kumar showed that for the collection of cells to be

asymptotically connected, that ψ(p) = 1, Θ(log n) neighbors is both necessary and sufficient.

Further, they proved lower and upper bounds. Letting G(n, φn) be the graph of n nodes with φn

nearest neighbors for all cells, ζb be the value of ψ for G(n, cb log n) for b∈{l, u}, and cl = 0.074

and cu = 2/ ln(4/e) ≈ 5.1774, they thus showed: limn→∞ P (ζu = 1) = 1 and

limn→∞ P (ζl = 0) = 1.

With E[nnghbrs] derived, Equation 4.1, the required parameter values to achieve asymptotic

connectedness must thus be in or above the range of Equation 4.3, described by n, r, and a.

nπr2

a
∈ [cl log n, cu log n] (4.3)

The calculated bounds for E[nnghbrs] for each experimentally tested number of cells is shown

in Figure 4.18. Note that Xue and Kumar’s result is an asymptotic limit and that they did not

show the nnghbrs value past which it always holds, so for “small values” of nnghbrs it may not hold.

Nonetheless, the values of the table predict the observed behavior as closely as the bounds cl and

cu allow. Figure 4.9 showed |C| > 0.90 |N | by |N | = 800, and |C| = |N | for |N | ≥ 1, 000. In fact,

39

using ln in place of log and Xue and Kumar’s conjecture that c = 1 agrees with this thesis

project’s experiments, the first experiment to contain exactly one group of all placed cells is

exactly the first experiment whose E[nnghbrs] ≥ lnn.

Number of Cells 500 600 800 1,000 5,000 10,000 20,000
Lower bound on E[nnghbrs] 0.2 0.2 0.2 0.2 0.3 0.3 0.3
E[nnghbrs] 3.9 4.7 6.3 7.9 39.3 78.5 157.1
Upper bound on E[nnghbrs] 14.0 14.4 15.0 15.5 19.2 20.7 22.3
Conjectured lnn 6.2 6.4 6.7 6.9 8.5 9.2 9.9

Figure 4.18: E[nnghbrs]: Asymptotic Limit and Observed Results Comparison
Comparison of E[nnghbrs] between Xue and Kumar’s asymptotic limit and this project’s observed

experimental results.

40

Chapter 5

Conclusions

5.1 Summary and Interpretation of Results

This thesis project developed a method for mapping two-dimensional shapes using an

amorphous computer and reporting the gathered information to a traditional computer. Three

types of descriptions generatable from a shape mapping amorphous computer’s queried data were

discussed and each description’s feasibility and requirements were assessed with respect to

variables affecting the cells’ environment and abilities. The identified types of descriptions

generatable from cells’ queried data were:

1. Connectivity of shapes in the region

2. The shape in terms of sampled points in a plane

3. The shape as a polygon

The assumptions the developed method requires were detailed and discussed, and the cell’s

primitive actions were enumerated. It was found that accurate cell position information and

shape-enclosing polygons could be produced with on-cell direction and distance sensors capable of

distinguishing among fifteen levels, expected cell neighbor counts of eight, and a successful cell

query rate of 13%. The required number of neighbors to ensure description of the complete region

being mapped was derived. Further, it was found that accurate shape descriptions can be built

from cells having no distance or direction sensors, using only cells’ knowledge of local neighbor

existence. Shape reconstruction based solely on cell connectivity was found to be more accurate

41

than reconstruction additionally using distance and direction information in cases where the

number of distinguishable ranges drops below a half-dozen.

The primary reason for the observed robustness stems from groups of cells having knowledge

about a particular cell and not relying on central or hierarchical control during the shape

mapping phase. The developed method’s memory and computation requirements are a

logarithmic function of the total number of cells used in mapping and linear in the number of

local cells. Redundantly storing information about local environments allows robust operation

without cell complexity being dependent on the scale cell deployment. Experimental results also

indicated that the accuracy of the developed cell placement algorithm making use of directional

and distance information degrades as the number of cells increases; it was not determined

whether this is inherent to the approach taken for the amorphous cell program or a result of the

specific cell placement algorithm used.

5.2 Social and Ethical Context

A goal of this thesis project was to further the area of amorphous computing; specifically, to

further our knowledge of how to design systems that are more resilient to failures and how to

accomplish computations in a much more distributed manner than we think about today. This

direction of research may lead us to new models of fault tolerance; engineering of biological

systems, perhaps complex organisms; new environmental issues resulting from hundreds of

thousands of biological cells or robots assembling each other and consuming and giving off energy;

and more. As ideas such as these are developed, we should contemplate how they will affect our

world and social environments. Amorphous shape mapping computers could be used to map

hazardous areas traditionally too toxic for even machines or as a safer alternative to X-Ray usage,

combining with nanotechnology to seek out regions and report back. Amorphous shape mapping

computers could also be used to gather reconnaissance information to attack an innocent nation

or group.

These applications of amorphous mapping cannot be accomplished with today’s technologies.

When are we likely to see benefits such as these? When are problems likely to arise? Some of

these are being found now, as we begin to develop models of amorphous and swarm computing.

Development of devices based upon such ideas is beginning (e.g. microelectromechanical systems

42

devices, nanotechnology, and bio-engineering) and is cited by some respected players as coming

about in ten to twenty years [2].

5.3 Recommendations for Future Research

An improved algorithm over the shape reconstruction algorithm given in Figure 4.3, taking

advantage of multiple cells having relative location information for a particular cell, could lead to

significant increases in the observed accuracies. neato does this, and, without relative location

information other than connectivity information, is able to outperform the developed shape

reconstruction algorithm when the number of distinguishable ranges drops below around a half

dozen. However, the amount of computation required was found to be prohibitive for deployments

over 5,000 cells when deployments in the hundreds of thousands were the goal.

Exploring the dropping of Assumption 1, that shapes are static, may lead to interesting

results and abilities. Moving wild life, objects in bodies of water or space may require such

abilities to be mapped using an amorphous computer.

While the developed method is robust to cell failure, it assumes cells either work or

completely fail, Assumption 7. Being able to make use of partially failed cells is another

unexplored area. Related, it is assumed that no cells intentionally inject false information.

Competitive applications might be significantly more useful if guarantees of lack of tampering or

attacks can be provided.

Much of the analysis performed for this thesis project was experimental, making use of the

developed simulator. This approach can be helpful in initially studying a problem, but analytical

models of performance would provide more general insights.

43

References

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E. Rauch,

G. Sussman, and R. Weiss. Amorphous computing. Communications of the ACM, 43(5),

May 2000.

[2] Harold Abelson, Don Allen, Daniel Coore, Christopher Hanson, George Homsy, Thomas

Knight Jr, Radhika Nagpal, Erik Rauch, Gerald Sussman, and Ron Weiss. Amorphous

Computing white paper. Memo 1665, MIT AI Lab, August 1999.

http://www.swiss.ai.mit.edu/projects/amorphous/.

[3] Albert-László Barabási. Linked. Plume, New York, May 2003.

[4] J. Bard. Morphogenesis. Cambridge University Press, U.K., 1990.

[5] Rebecca Bloom, Catherine Chang, and Attila Kondacs. Compilation and

Biologically-Inspired Self-Assembly of Two-Diemnsional Shapes. http://www.swiss.ai.

mit.edu/projects/amorphous/6.978/final-papers/attila-catie-rebecca-final.pdf,

December 2002.

[6] Almut Burchard. University of Virginia. Personal communications, May 2004.

[7] D. Coore. Establishing a coordinate system on an amorphous computer. 1998 MIT Student

Workshop on High Performance Computing in Science and Engineering, MIT/LCS/TR-737,

1998.

[8] D. Coore, R. Nagpal, and R. Weiss. Paradigms for structure in an amorphous computer. AI

Memo 1614, MIT Artificial Intelligence Lab, 1997.

[9] Daniel Coore. Botanical Computing: A Developmental Approach to Generating Interconnect

Topologies on an Amorphous Computer. PhD thesis, MIT, 1999.

44

http://www.swiss.ai.mit.edu/projects/amorphous/6.978/final-papers/attila-catie-rebecca-final.pdf
http://www.swiss.ai.mit.edu/projects/amorphous/6.978/final-papers/attila-catie-rebecca-final.pdf

[10] David Evans. Programming the swarm, July 2000. National Science Foundation Career

Award.

[11] David Evans, Tarek Abdelzaher, and David Brogan. Itr: A framework for

environment-aware, massively distributed computing, November 2001. National Science

Foundation Information Technology Research Award.

[12] Christopher Frost. Shapsim simulator. http://www.cs.virginia.edu/~ccf7f/shapemap/.

[13] Christopher Frost. Amorphous shape mapping: Thesis proposal.

http://www.cs.virginia.edu/~ccf7f/shapemap/, October 2003.

[14] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for drawing directed

graphs. IEEE Transacations on Software Engineering, 19(3):214–230, 1993.

[15] Selvin George, David Evans, and Steven Marchette. A biological programming model for

self-healing. ACM Workshop On Survivable and Self-Regenerative Systems, October 2003.

[16] Scott Gilbert. Developmental Biology. Sinauer Associates Inc Publishers, Sunderland,

Massachusetts, 5 edition, 1997.

[17] Geoffrey Grimmett. Percolation (Grundlehren Der Mathematischen Wissenschaften; 321).

Springer, Germany, 2 edition, 1999.

[18] Crossbow Technology Inc. Mica mtot300 datasheet, April 2004.

[19] Information Sciences Instiute. Rfc 793, transmission control protocol, September 1981.

[20] N. Iyer, Y. Kalyanaraman, K. Lou, S. Jayanti, and K. Ramani. Early results with a 3d

engineering shape search system. International Symposium on Product Lifecycle

Management (PLM 03), Indian Institute of Science, Bangalore, India, 2003.

[21] Attila Kondacs. Biologically-inspired Self-Assembly of 2D Shapes, Using Global-to-local

Compilation. International Joint Conference on Artificial Intelligence, 2003.

[22] AT&T Labs. Graphviz. http://www.research.att.com/sw/tools/graphviz/.

[23] Peter Lawrence. The Making of a Fly: The Genetics of Animal Design. Blackwell Scientific

Publications, Oxford, 1992.

45

http://www.cs.virginia.edu/~ccf7f/shapemap/
http://www.cs.virginia.edu/~ccf7f/shapemap/
http://www.research.att.com/sw/tools/graphviz/

[24] Radhika Nagpal. Programmable Self-Assembly: Constructing Global Shape using

Biologically-inspired Local Interactions and Origami Mathematics. PhD thesis, MIT, 2001.

[25] Radhika Nagpal, Attila Kondacs, and Catherine Chang. Programming Methodology for

Biologically-Inspired Self-Assembling Systems. AAAI Spring Symposium on Computational

Synthesis, March 2003.

[26] Radhika Nagpal, Howard Shrobe, and Jonathan Bachrach. Organizing a global coordinate

system from local information on an amorphous computer. AI Memo 1666, MIT Artificial

Intelligence Lab, 1999.

[27] Radhika Nagpal, Howard Shrobe, and Jonathan Bachrach. Organizing a global coordinate

system from local information on an ad hoc sensor network. In 2nd International Workshop

on Information Processing in Sensor Networks (IPSN ’03), April 2003.

[28] Ryan Newton and Jake Beal. Amorphous infrastructure for language implementation.

http://www.swiss.ai.mit.edu/projects/amorphous/6.978/final-papers/

jakebeal-newton-final.pdf, December 2002.

[29] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Introduction.

Springer-Verlag, New York, 1985.

[30] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket

location-support system. In Mobile Computing and Networking, pages 32–43, 2000.

http://citeseer.nj.nec.com/priyantha00cricket.html.

[31] Kenneth H. Rosen. Discrete Mathematics and Its Applications. WCB/McGraw-Hill, 4

edition, 1999.

[32] Sheldon Ross. A First Course in Probability. Prentice Hall, New Jersey, 6 edition, 2002.

[33] Slobodan N. Simic and Shankar Sastry. A distributed algorithm for localization in random

wireless networks. http://citeseer.nj.nec.com/556794.html.

[34] D Arcy Thompson. On Growth and Form, abridged edition. Cambridge University Press,

U.K., 1961.

[35] L. Wolpert. Principles of Development. Oxford University Press, U.K., 1998.

46

http://www.swiss.ai.mit.edu/projects/amorphous/6.978/final-papers/jakebeal-newton-final.pdf
http://www.swiss.ai.mit.edu/projects/amorphous/6.978/final-papers/jakebeal-newton-final.pdf
http://citeseer.nj.nec.com/priyantha00cricket.html
http://citeseer.nj.nec.com/556794.html

[36] Lewis Wolpert. Principles of Development. Oxford University Press, New York, 1998.

[37] Anthony D. Wood and John A. Stankovic. Denial of service in sensor networks. IEEE

Computer, 35(10):54–62, October 2002.

http://citeseer.nj.nec.com/wood02denial.html.

[38] Feng Xue and P. R. Kumar. The number of neighbors needed for connectivity of wireless

networks. Wireless Networks, 15(3):169–181, 2004.

47

http://citeseer.nj.nec.com/wood02denial.html

	Introduction
	Purpose Statement
	Problem Statement
	Project Context
	The Problem: Amorphously Mapping Unknown Shapes

	Uses of Amorphous Shape Mapping
	Overview

	Background
	Amorphous and Swarm Computing
	Sensor Networks

	Mapping Method
	An Example Method
	Assumptions
	Environment
	Cell
	Observer

	Cell Primitives
	Method
	Placing Cells
	Mapping the Region
	Querying Cells

	Analysis and Discussion
	Simulation Environment
	Connectivity Description
	Method
	Results

	Sample Point Description
	Method
	Results

	Polygonal Description
	Method
	Results

	Largest Connected Cell Subgroup Behavior Explanations and Predictions
	Background and Observed Behavior Explanation
	Required Parameters for Complete Cell Connectedness

	Conclusions
	Summary and Interpretation of Results
	Social and Ethical Context
	Recommendations for Future Research

